Show simple item record

dc.contributor.authorDunlea, Ann G.  Concept link
dc.contributor.authorMurray, Richard W.  Concept link
dc.contributor.authorSantiago Ramos, Danielle  Concept link
dc.contributor.authorHiggins, John A.  Concept link
dc.identifier.citationNature Communications 8 (2017): 844en_US
dc.description© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 8 (2017): 844, doi:10.1038/s41467-017-00853-5.en_US
dc.description.abstractAuthigenic clay minerals formed on or in the seafloor occur in every type of marine sediment. They are recognized to be a major sink of many elements in the ocean but are difficult to study directly due to dilution by detrital clay minerals. The extremely low dust fluxes and marine sedimentation rates in the South Pacific Gyre (SPG) provide a unique opportunity to examine relatively undiluted authigenic clay. Here, using Mg isotopes and element concentrations combined with multivariate statistical modeling, we fingerprint and quantify the abundance of authigenic clay within SPG sediment. Key reactants include volcanic ash (source of reactive aluminium) and reactive biogenic silica on or shallowly buried within the seafloor. Our results, together with previous studies, suggest that global reorganizations of biogenic silica burial over the Cenozoic reduced marine authigenic clay formation, contributing to the rise in seawater Mg/Ca and decline in atmospheric CO2 over the past 50 million years.en_US
dc.description.sponsorshipFunding for this research was provided by the U.S. National Science Foundation to R.W.M. (OCE1130531) and to J.A.H. (OCE1654571).en_US
dc.publisherNature Publishing Groupen_US
dc.rightsAttribution 4.0 International*
dc.titleCenozoic global cooling and increased seawater Mg/Ca via reduced reverse weatheringen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International