• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Extraction of uranium from seawater : design and testing of a symbiotic system

    Thumbnail
    View/Open
    Haji_phdthesis.pdf (84.46Mb)
    Date
    2017-06
    Author
    Haji, Maha N.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/9160
    DOI
    10.1575/1912/9160
    Abstract
    Seawater is estimated to contain 4.5 billion tonnes of uranium, approximately 1000 times that available in conventional terrestrial resources. Finding a sustainable way to harvest uranium from seawater will provide a source of nuclear fuel for generations to come, while also giving all countries with ocean access a stable supply. This will also eliminate the need to store spent fuel for potential future reprocessing, thereby addressing nuclear proliferation issues as well. While extraction of uranium from seawater has been researched for decades, no economical, robust, ocean-deployable method of uranium collection has been presented to date. This thesis presents a symbiotic approach to ocean harvesting of uranium where a common structure supports a wind turbine and a device to harvest uranium from seawater. The Symbiotic Machine for Ocean uRanium Extraction (SMORE) created and tested decouples the function of absorbing uranium from the function of deploying the absorbent which enables a more efficient absorbent to be developed by chemists. The initial SMORE concept involves an adsorbent device that is cycled through the seawater beneath the turbine and through an elution plant located on a platform above the sea surface. This design allows for more frequent harvesting, reduced down- time, and a reduction in the recovery costs of the adsorbent. Specifically, the design decouples the mechanical and chemical requirements of the device through a hard, permeable outer shell containing uranium adsorbing fibers. This system is designed to be used with the 5-MW NREL OC3-Hywind floating spar wind turbine. To optimize the decoupling of the chemical and mechanical requirements using the shell enclosures for the uranium adsorbing fibers, an initial design analysis of the enclosures is presented. Moreover, a flume experiment using filtered, temperature- controlled seawater was developed to determine the effect that the shells have on the uptake of the uranium by the fibers they enclose. For this experiment, the AI8 amidoxime-based adsorbent fiber developed by Oak Ridge National Laboratory was used, which is a hollow-gear-shaped, high surface area polyethylene fiber prepared by radiation-induced graft polymerization of the amidoxime ligand and a vinylphosphonic acid comonomer. The results of the flume experiment were then used to inform the design and fabrication of two 1/10th physical scale SMORE prototypes for ocean testing. The AI8 adsorbent fibers were tested in two shell designs on both a stationary and a moving system during a nine-week ocean trial, with the latter allowing the effect of additional water flow on the adsorbents uranium uptake to be investigated. A novel method using the measurement of radium extracted onto MnO2 impregnated acrylic fibers to quantify the volume of water passing through the shells of the two systems was utilized. The effect of a full-scale uranium harvesting system on the hydrodynamics of an offshore wind turbine were then investigated using a 1/150th Froude scale wave tank test. These experiments compared the measured excitation forces and responses of two versions of SMORE to those of an unmodified floating wind turbine. With insights from the experiments on what a final full-scale design might look like, a cost-analysis was performed to determine the overall uranium production cost from a SMORE device. In this analysis, the capital, operating, and decommissioning costs were calculated and summed using discounted cash ow techniques similar to those used in previous economic models of the uranium adsorbent. Major contributions of this thesis include fundamental design tools for the development and evaluation of symbiotic systems to harvest uranium or other minerals from seawater. These tools will allow others to design offshore uranium harvesting systems based on the adsorbent properties and the scale of the intended installation. These flexible tools can be tuned for a particular adsorbent, location, and installation size, thereby allowing this technology to spread broadly.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2017
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    • WHOI Theses
    Suggested Citation
    Thesis: Haji, Maha N., "Extraction of uranium from seawater : design and testing of a symbiotic system", 2017-06, DOI:10.1575/1912/9160, https://hdl.handle.net/1912/9160
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Internal hydraulic jumps with upstream shear 

      Ogden, Kelly A. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2017-02)
      Internal hydraulic jumps in flows with upstream shear are investigated numerically and theoretically. The role of upstream shear has not previously been thoroughly investigated, although it is important in many oceanographic ...
    • Thumbnail

      Insight into chemical, biological, and physical processes in coastal waters from dissolved oxygen and inert gas tracers 

      Manning, Cara C. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2017-02)
      In this thesis, I use coastal measurements of dissolved O2 and inert gases to provide insight into the chemical, biological, and physical processes that impact the oceanic cycles of carbon and dissolved gases. Dissolved ...
    • Thumbnail

      Coral biomineralization, climate proxies and the sensitivity of coral reefs to CO2-driven climate change 

      DeCarlo, Thomas M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2017-02)
      Scleractinian corals extract calcium (Ca2+) and carbonate (CO2−3) ions from seawater to construct their calcium carbonate (CaCO3) skeletons. Key to the coral biomineralization process is the active elevation of the CO2−3 ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo