Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.)
Date
2017-04-24Author
Waite, David W.
Concept link
Vanwonterghem, Inka
Concept link
Rinke, Christian
Concept link
Parks, Donovan H.
Concept link
Zhang, Ying
Concept link
Takai, Ken
Concept link
Sievert, Stefan M.
Concept link
Simon, Jörg
Concept link
Campbell, Barbara J.
Concept link
Hanson, Thomas E.
Concept link
Woyke, Tanja
Concept link
Klotz, Martin G.
Concept link
Hugenholtz, Philip
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/9010As published
https://doi.org/10.3389/fmicb.2017.00682DOI
10.3389/fmicb.2017.00682Keyword
Epsilonproteobacteria; Taxonomy; Classification; Genome; Phylogenomics; Epsilonbacteraeota; EvolutionAbstract
The Epsilonproteobacteria is the fifth validly described class of the phylum Proteobacteria, known primarily for clinical relevance and for chemolithotrophy in various terrestrial and marine environments, including deep-sea hydrothermal vents. As 16S rRNA gene repositories have expanded and protein marker analysis become more common, the phylogenetic placement of this class has become less certain. A number of recent analyses of the bacterial tree of life using both 16S rRNA and concatenated marker gene analyses have failed to recover the Epsilonproteobacteria as monophyletic with all other classes of Proteobacteria. In order to address this issue, we investigated the phylogenetic placement of this class in the bacterial domain using 16S and 23S rRNA genes, as well as 120 single-copy marker proteins. Single- and concatenated-marker trees were created using a data set of 4,170 bacterial representatives, including 98 Epsilonproteobacteria. Phylogenies were inferred under a variety of tree building methods, with sequential jackknifing of outgroup phyla to ensure robustness of phylogenetic affiliations under differing combinations of bacterial genomes. Based on the assessment of nearly 300 phylogenetic tree topologies, we conclude that the continued inclusion of Epsilonproteobacteria within the Proteobacteria is not warranted, and that this group should be reassigned to a novel phylum for which we propose the name Epsilonbacteraeota (phyl. nov.). We further recommend the reclassification of the order Desulfurellales (Deltaproteobacteria) to a novel class within this phylum and a number of subordinate changes to ensure consistency with the genome-based phylogeny. Phylogenomic analysis of 658 genomes belonging to the newly proposed Epsilonbacteraeota suggests that the ancestor of this phylum was an autotrophic, motile, thermophilic chemolithotroph that likely assimilated nitrogen from ammonium taken up from the environment or generated from environmental nitrate and nitrite by employing a variety of functional redox modules. The emergence of chemoorganoheterotrophic lifestyles in several Epsilonbacteraeota families is the result of multiple independent losses of various ancestral chemolithoautotrophic pathways. Our proposed reclassification of this group resolves an important anomaly in bacterial systematics and ensures that the taxonomy of Proteobacteria remains robust, specifically as genome-based taxonomies become more common.
Description
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 8 (2017): 682, doi:10.3389/fmicb.2017.00682.
Collections
Suggested Citation
Frontiers in Microbiology 8 (2017): 682The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Addendum: Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.)
Waite, David W.; Vanwonterghem, Inka; Rinke, Christian; Parks, Donovan H.; Zhang, Ying; Takai, Ken; Sievert, Stefan M.; Simon, Jörg; Campbell, Barbara J.; Hanson, Thomas E.; Woyke, Tanja; Klotz, Martin G.; Hugenholtz, Philip (Frontiers Media, 2018-04-18) -
Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria
Zhang, Ying; Sievert, Stefan M. (Frontiers Media, 2014-03-19)The rapidly increasing availability of complete bacterial genomes has created new opportunities for reconstructing bacterial evolution, but it has also highlighted the difficulty to fully understand the genomic and functional ... -
Productivity, metabolism and physiology of free-living chemoautotrophic Epsilonproteobacteria
McNichol, Jesse C. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2016-09)Chemoautotrophic ecosystems at deep-sea hydrothermal vents were discovered in 1977, but not until 1995 were free-living autotrophic Epsilonproteobacteria identified as important microbial community members. Because the ...