CODE-1 : moored array and large-scale data report

View/ Open
Date
1983-08Author
Beardsley, Robert C.
Concept link
Mills, Carol A.
Concept link
Rosenfeld, Leslie K.
Concept link
Bratkovich, Alan W.
Concept link
Erdman, M. Rustin
Concept link
Winant, Clinton D.
Concept link
Allen, John S.
Concept link
Halliwell, George R.
Concept link
Brown, Wendell S.
Concept link
Irish, James D.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/8946Location
Northern California shelfDOI
10.1575/1912/8946Abstract
The Coastal Ocean Dynamics Experiment
(CODE) was undertaken to identify and study
the important dynamical processes which
govern the wind-driven motion of coastal
water over the continental shelf. The
initial effort in this multi-year, multi-institutional
research program was to obtain
high-quality data sets of all the
relevant physical variables needed to construct
accurate kinematic and dynamic descriptions
of the response of shelf water
to strong wind forcing in the 2 to 10 day
band. A series of two small-scale, densely-instrumented
field experiments of approximately
four months duration (called CODE-1
and CODE-2) were designed to explore and
to determine the kinematics and momentum
and heat balances of the local wind-driven
flow over a region of the northern California shelf which is characterized by both
relatively simple bottom topography and
large wind stress events in both winter
and summer. A more lightly instrumented,
long-term, large-scale component was designed
to help separate the local wind-driven
response in the region of the small-scale
experiments from motions generated either offshore by the California Current
system or in some distant region along the
coast, and also to help determine the seasonal
cycles of the atmospheric forcing,
water structure, and coastal currents over
the northern California shelf.
The first small-scale experiment
(CODE-1) was conducted between April and
August, 1981 as a pilot study in which
primary emphasis was placed on characterizing
the wind-driven "signal" and the
"noise" from which this signal must be
extracted. In particular, CODE-1 was
designed to identify the key features of
the circulation and its variability over
the northern California shelf and to
determine the important time and length
scales of the wind-driven response. This
report presents a basic description of the
moored array data and some other Eulerian
data collected during CODE-1. A brief
description of the CODE-1 field program is
presented first, followed by a description
of the common data analysis procedures used
to produce the various data sets presented
here. Then basic descriptions of the following
data sets are presented: (a) the
coastal and moored meteorological measurements,
(b) the moored current measurements,
(c) the moored temperature and conductivity
observations, (d) the bottom pressure measurements,
and (e) the wind and adjusted
coastal sea level observations obtained as
part of the CODE-1 large-scale component.
Collections
Suggested Citation
Beardsley, R. C., Mills, C. A., Rosenfeld, L. K., Bratkovich, A. W., Erdman, M. R., Winant, C. D., Allen, J. S., Halliwell, G. R., Brown, W. S., & Irish, J. D. (1983). CODE-1: moored array and large-scale data report. Woods Hole Oceanographic Institution. https://doi.org/10.1575/1912/8946Related items
Showing items related by title, author, creator and subject.
-
Ocean Network Information Center (OCEANIC) developing an online ocean information system
Churgin, James (IAMSLIC, 1989) -
Understanding the ocean carbon and sulfur cycles in the context of a variable ocean : a study of anthropogenic carbon storage and dimethylsulfide production in the Atlantic Ocean
Levine, Naomi M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2010-02)Anthropogenic activity is rapidly changing the global climate through the emission of carbon dioxide. Ocean carbon and sulfur cycles have the potential to impact global climate directly and through feedback loops. Numerical ... -
Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean : a modeling study
Arruda, R.; Calil, Paulo H. R.; Bianchi, A. A.; Doney, Scott C.; Gruber, Nicolas; Lima, Ivan D.; Turi, G. (Copernicus Publications on behalf of the European Geosciences Union, 2015-10-12)We use an eddy-resolving, regional ocean biogeochemical model to investigate the main variables and processes responsible for the climatological spatio-temporal variability of pCO2 and the air-sea CO2 fluxes in the ...