• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Marine Chemistry and Geochemistry (MC&G)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Marine Chemistry and Geochemistry (MC&G)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Utility of Rn-222 as a passive tracer of subglacial distributed system drainage

    Thumbnail
    View/Open
    Article (1018.Kb)
    Supplementary Material (566.3Kb)
    Date
    2017-01-23
    Author
    Linhoff, Benjamin S.  Concept link
    Charette, Matthew A.  Concept link
    Nienow, Peter W.  Concept link
    Wadham, Jemma L.  Concept link
    Tedstone, Andrew  Concept link
    Cowton, Thomas  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/8924
    As published
    https://doi.org/10.1016/j.epsl.2016.12.039
    DOI
    10.1016/j.epsl.2016.12.039
    Keyword
     Radon; Greenland; Glacier; Proglacial river; Meltwater 
    Abstract
    Water flow beneath the Greenland Ice Sheet (GrIS) has been shown to include slow-inefficient (distributed) and fast-efficient (channelized) drainage systems, in response to meltwater delivery to the bed via both moulins and surface lake drainage. This partitioning between channelized and distributed drainage systems is difficult to quantify yet it plays an important role in bulk meltwater chemistry and glacial velocity, and thus subglacial erosion. Radon-222, which is continuously produced via the decay of 226Ra, accumulates in meltwater that has interacted with rock and sediment. Hence, elevated concentrations of 222Rn should be indicative of meltwater that has flowed through a distributed drainage system network. In the spring and summer of 2011 and 2012, we made hourly 222Rn measurements in the proglacial river of a large outlet glacier of the GrIS (Leverett Glacier, SW Greenland). Radon-222 activities were highest in the early melt season (10–15 dpm L−1), decreasing by a factor of 2–5 (3–5 dpm L−1) following the onset of widespread surface melt. Using a 222Rn mass balance model, we estimate that, on average, greater than 90% of the river 222Rn was sourced from distributed system meltwater. The distributed system 222Rn flux varied on diurnal, weekly, and seasonal time scales with highest fluxes generally occurring on the falling limb of the hydrograph and during expansion of the channelized drainage system. Using laboratory based estimates of distributed system 222Rn, the distributed system water flux generally ranged between 1–5% of the total proglacial river discharge for both seasons. This study provides a promising new method for hydrograph separation in glacial watersheds and for estimating the timing and magnitude of distributed system fluxes expelled at ice sheet margins.
    Description
    This paper is not subject to U.S. copyright. The definitive version was published in Earth and Planetary Science Letters 462 (2017): 180-188, doi:10.1016/j.epsl.2016.12.039.
    Collections
    • Marine Chemistry and Geochemistry (MC&G)
    Suggested Citation
    Earth and Planetary Science Letters 462 (2017): 180-188
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo