• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Magnetic exploration of a low-temperature ultramafic-hosted hydrothermal site (Lost City, 30°N, MAR)

    Thumbnail
    View/Open
    Szitkar_Lost_City_Manuscript_Final.pdf (1.331Mb)
    Date
    2016-12
    Author
    Szitkar, Florent  Concept link
    Tivey, Maurice A.  Concept link
    Kelley, Deborah S.  Concept link
    Karson, Jeffrey A.  Concept link
    Fruh-Green, Gretchen L.  Concept link
    Denny, Alden R.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/8897
    As published
    https://doi.org/10.1016/j.epsl.2016.12.033
    Keyword
     Hydrothermal processes; Magnetics; Slow-spreading centers; Oceanic core complex 
    Abstract
    A 2003 high-resolution magnetic survey conducted by the Autonomous Underwater Vehicle ABE over the low-temperature, ultramafic-hosted hydrothermal field Lost City reveals a weak positive magnetic anomaly. This observation is in direct contrast to recent observations of strong positive magnetic anomalies documented over the high-temperature ultramafic-hosted hydrothermal vents fields Rainbow and Ashadze, which indicates that temperature may control the production of magnetization at these sites. The Lost City survey provides a unique opportunity to study a field that is, to date, one of a kind, and is an end member of ultramafic-hosted hydrothermal systems. Our results highlight the key contribution of temperature on magnetite production resulting from serpentinization reactions. Whereas high temperature promotes significant production and partitioning of iron into magnetite, low temperature favors iron partitioning into various alteration phases, resulting in a magnetite-poor rock. Moreover, the distribution of magnetic anomalies confirms results of a previous geological survey indicating the progressive migration of hydrothermal activity upslope. These discoveries contribute to the results of 25 years of magnetic exploration of a wide range of hydrothermal sites, from low- to high-temperature and from basalt- to ultramafic-hosted, and thereby validate using high-resolution magnetics as a crucial parameter for locating and characterizing hydrothermal sites hosting unique chemosynthetic-based ecosystems and potentially mineral-rich deposits.
    Description
    © The Author(s), 2016. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 461 (2017): 40-45, doi:10.1016/j.epsl.2016.12.033.
    Collections
    • Geology and Geophysics (G&G)
    Suggested Citation
    Preprint: Szitkar, Florent, Tivey, Maurice A., Kelley, Deborah S., Karson, Jeffrey A., Fruh-Green, Gretchen L., Denny, Alden R., "Magnetic exploration of a low-temperature ultramafic-hosted hydrothermal site (Lost City, 30°N, MAR)", 2016-12, https://doi.org/10.1016/j.epsl.2016.12.033, https://hdl.handle.net/1912/8897
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Crustal magnetization and the subseafloor structure of the ASHES vent field, Axial Seamount, Juan de Fuca Ridge : implications for the investigation of hydrothermal sites 

      Tontini, F. Caratori; Crone, Timothy J.; de Ronde, Cornel E. J.; Fornari, Daniel J.; Kinsey, James C.; Mittelstaedt, Eric; Tivey, Maurice A. (John Wiley & Sons, 2016-06-24)
      High-resolution geophysical data have been collected using the Autonomous Underwater Vehicle (AUV) Sentry over the ASHES (Axial Seamount Hydrothermal Emission Study) high-temperature (~348°C) vent field at Axial Seamount, ...
    • Thumbnail

      Geological and thermal control of the hydrothermal system in northern Yellowstone Lake: inferences from high-resolution magnetic surveys 

      Bouligand, Claire; Tivey, Maurice A.; Finn, Carol A.; Morgan, Lisa A.; Shanks, Wayne C. Pat, III; Sohn, Robert A. (American Geophysical Union, 2020-07-27)
      A multiscale magnetic survey of the northern basin of Yellowstone Lake was undertaken in 2016 as part of the Hydrothermal Dynamics of Yellowstone Lake Project (HD‐YLAKE)—a broad research effort to characterize the ...
    • Thumbnail

      A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge 

      Zhu, Jian; Lin, Jian; Chen, Yongshun J.; Tao, Chunhui; German, Christopher R.; Yoerger, Dana R.; Tivey, Maurice A. (American Geophysical Union, 2010-09-21)
      Inversion of near-bottom magnetic data reveals a well-defined low crustal magnetization zone (LMZ) near a local topographic high (37°47′S, 49°39′E) on the ultraslow-spreading Southwest Indian Ridge (SWIR). The magnetic ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo