• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • WHOI Technical Reports
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • WHOI Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    High frequency bottom stress variability and its prediction in the CODE region

    Thumbnail
    View/Open
    83-19.pdf (31.49Mb)
    Date
    1983-06
    Author
    Grant, William D.  Concept link
    Williams, Albert J.  Concept link
    Glenn, Scott M.  Concept link
    Cacchione, David A.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/8879
    DOI
    10.1575/1912/8879
    Keyword
     Ocean waves; Shear waves; Boundary layer; Ocean circulation 
    Abstract
    High quality bottom boundary layer measurements obtained in the CODE region off Northern California are described. Bottom tripod velocity measurements and supporting data obtained during typical spring and early summer conditions and during a winter storm are analyzed to obtain both velocity profiles and mean bottom stress and bottom roughness estimates. The spring/summer measurements were taken in June, 1981 during CODE-1 at C3 (90 m) by Grant and Williams, WHOI; the winter storm data was taken in November 1980 prior to CODE-1 at the R2 (80 m) site by Cacchione and Drake, USGS. The mean near-bottom (< 2m) velocity profiles are logarithmic (R2 > 0.993) much of the time for everyday flows; deviations are primarily due to kinematical effects induced by unsteadiness from internal waves. Stress profiles show the logarithmic layer corresponds to a constant stress layer as expected for the inertial region of a boundary layer. Stress estimates made from dissipation and profile techniques agree at the 95 percent confidence level. Typical z0 values estimated from measurements greater than 30 cm above the bottom have magnitudes of approximately 1 cm; an order of magnitude larger than the physical bottom roughness. Corresponding u* values have typical magnitudes of 0.5-1.0 cm/sec; more than twice as large as expected from a usual drag law prediction (corresponding to over a factor of four in mean stress). These values are demonstrated to be consistent with those expected for combined wave and current flows predicted theoretically by Grant and Madsen (1979) and Smith (1977). The u* values estimated from the CODE-1 data and predicted by the Grant and Madsen (1979) model typically agree within 10-15 percent. Similar results are demonstrated for the winter storm conditions during which large sediment transport occurs. (Typical z0 values are 4-6 cm; typical u* values are 3-6 cm/sec). The waves influencing the mid-shelf bottom stress estimates are 14-20 second swell associated with Southern and Western Pacific storms. These waves are present over most of the year. The results clearly demonstrate that waves must be taken into account in predicting bottom stress over the Northern California Shelf.
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    • WHOI Technical Reports
    Suggested Citation
    Technical Report: Grant, William D., Williams, Albert J., Glenn, Scott M., Cacchione, David A., "High frequency bottom stress variability and its prediction in the CODE region", 1983-06, DOI:10.1575/1912/8879, https://hdl.handle.net/1912/8879
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Ocean eddy dynamics in a coupled ocean-atmosphere model 

      Berloff, Pavel S.; Dewar, William K.; Kravtsov, Sergey K.; McWilliams, James C. (American Meteorological Society, 2007-05)
      The role of mesoscale oceanic eddies is analyzed in a quasigeostrophic coupled ocean–atmosphere model operating at a large Reynolds number. The model dynamics are characterized by decadal variability that involves nonlinear ...
    • Thumbnail

      Mechanisms governing interannual variability of upper-ocean temperature in a global ocean hindcast simulation 

      Doney, Scott C.; Yeager, Stephen G.; Danabasoglu, Gokhan; Large, William G.; McWilliams, James C. (American Meteorological Society, 2007-07)
      The interannual variability in upper-ocean (0–400 m) temperature and governing mechanisms for the period 1968–97 are quantified from a global ocean hindcast simulation driven by atmospheric reanalysis and satellite data ...
    • Thumbnail

      From salty to fresh—salinity processes in the Upper-ocean Regional Study-2 (SPURS-2) : diagnosing the physics of a rainfall-dominated salinity minimum 

      Schmitt, Raymond W.; Asher, William E.; Bingham, Frederick; Carton, James A.; Centurioni, Luca R.; Farrar, J. Thomas; Gordon, Arnold L.; Hodges, Benjamin A.; Jessup, Andrew T.; Kessler, William S.; Rainville, Luc; Shcherbina, Andrey Y. (The Oceanography Society, 2015-03)
      One of the notable features of the global ocean is that the salinity of the North Atlantic is about 1 psu higher than that of the North Pacific. This contrast is thought to be due to one of the large asymmetries in the ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy