• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Connecting the Greenland Ice Sheet and the ocean : a case study of Helheim Glacier and Sermilik Fjord

    Thumbnail
    View/Open
    29-4_straneo.pdf (2.589Mb)
    Date
    2016-12
    Author
    Straneo, Fiamma  Concept link
    Hamilton, Gordon S.  Concept link
    Stearns, Leigh A.  Concept link
    Sutherland, David A.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/8665
    As published
    https://doi.org/10.5670/oceanog.2016.97
    DOI
    10.5670/oceanog.2016.97
    Abstract
    The rapid ice loss from the Greenland Ice Sheet that began in the late 1990s sparked an interest in glacier/ocean exchanges both because an increase in submarine melting of the glacier is a potential trigger of glacier retreat and because the increasing freshwater discharge can affect the regional ocean’s circulation and ecosystems. An interdisciplinary field project focused on the Helheim Glacier-Sermilik Fjord system began in 2008 and has continued to date. We found that warm, Atlantic Water flows into the fjord, drives melting of the glacier, and is regularly replenished through shelf-forced and glacier-driven circulations. In summer, the release of surface melt at the base of the glacier has a pronounced impact on local ocean circulation, the properties of the glacier, and its melt rate. Measurements taken in the fjord indicate that it is virtually impossible to derive submarine melt rates from hydrographic (including moored) data due to the fjord’s pronounced water mass variability and uncertain contribution from iceberg melt. Efforts to correlate glacier behavior with ocean forcing on seasonal and interannual time scales yield no straightforward connections, likely because of a dependence on a wider range of parameters, including subglacial discharge and bedrock geometry. This project emphasizes the need for sustained long-term measurements of multiple glacier/ocean/atmosphere systems to understand the different dynamics that control their evolution.
    Description
    Author Posting. © The Oceanography Society, 2016. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 29, no. 4 (2016): 34–45, doi:10.5670/oceanog.2016.97.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Oceanography 29, no. 4 (2016): 34–45
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo