Observations and modeling of a tidal inlet dye tracer plume
Date
2016-10-24Author
Feddersen, Falk
Concept link
Olabarrieta, Maitane
Concept link
Guza, R. T.
Concept link
Winters, Dylan
Concept link
Raubenheimer, Britt
Concept link
Elgar, Steve
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/8628As published
https://doi.org/10.1002/2016JC011922DOI
10.1002/2016JC011922Keyword
Tidal inlet; Tracer transport; Ebb-tidal plumeAbstract
A 9 km long tracer plume was created by continuously releasing Rhodamine WT dye for 2.2 h during ebb tide within the southern edge of the main tidal channel at New River Inlet, NC on 7 May 2012, with highly obliquely incident waves and alongshore winds. Over 6 h from release, COAWST (coupled ROMS and SWAN, including wave, wind, and tidal forcing) modeled dye compares well with (aerial hyperspectral and in situ) observed dye concentration. Dye first was transported rapidly seaward along the main channel and partially advected across the ebb-tidal shoal until reaching the offshore edge of the shoal. Dye did not eject offshore in an ebb-tidal jet because the obliquely incident breaking waves retarded the inlet-mouth ebb-tidal flow and forced currents along the ebb shoal. The dye plume largely was confined to <4 m depth. Dye was then transported downcoast in the narrow (few 100 m wide) surfzone of the beach bordering the inlet at 0.3 inline image driven by wave breaking. Over 6 h, the dye plume is not significantly affected by buoyancy. Observed dye mass balances close indicating all released dye is accounted for. Modeled and observed dye behaviors are qualitatively similar. The model simulates well the evolution of the dye center of mass, lateral spreading, surface area, and maximum concentration, as well as regional (“inlet” and “ocean”) dye mass balances. This indicates that the model represents well the dynamics of the ebb-tidal dye plume. Details of the dye transport pathways across the ebb shoal are modeled poorly perhaps owing to low-resolution and smoothed model bathymetry. Wave forcing effects have a large impact on the dye transport.
Description
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 7819–7844, doi:10.1002/2016JC011922.
Collections
Suggested Citation
Journal of Geophysical Research: Oceans 121 (2016): 7819–7844The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International
Related items
Showing items related by title, author, creator and subject.
-
Larval responses to turbulence and temperature in a tidal inlet: Habitat selection by dispersing gastropods?
Fuchs, Heidi L.; Solow, Andrew R.; Mullineaux, Lauren S. (Sears Foundation for Marine Research, 2010-06)Marine larval dispersal is affected by hydrodynamic transport and larval behavior, but little is known about how behavior affects large-scale patterns of dispersal and recruitment. Intertidal habitats are characterized by ... -
The role of morphology and wave-current interaction at tidal inlets : an idealized modeling analysis
Olabarrieta, Maitane; Geyer, W. Rockwell; Kumar, Nirnimesh (John Wiley & Sons, 2014-12-23)The outflowing currents from tidal inlets are influenced both by the morphology of the ebb-tide shoal and interaction with incident surface gravity waves. Likewise, the propagation and breaking of incident waves are affected ... -
Hydrodynamics of a multiple tidal inlet system : Katama Bay, Martha’s Vineyard, MA
Orescanin, Mara M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2015-09)Observations, theoretical models, and a numerical model (ADCIRC) are used to investigate the effects of tides, waves, bay bathymetry, and changing inlet geometry on the hydrodynamics of the multiple-inlet Katama system, ...