• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    The contribution of physical processes to inter-annual variations of hypoxia in Chesapeake Bay : a 30-yr modeling study

    Thumbnail
    View/Open
    lno10372.pdf (1.314Mb)
    Date
    2016-07-29
    Author
    Scully, Malcolm E.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/8593
    As published
    https://doi.org/10.1002/lno.10372
    DOI
    10.1002/lno.10372
    Abstract
    A numerical circulation model with a very simple representation of dissolved oxygen dynamics is used to simulate hypoxia in Chesapeake Bay for the 30-yr period 1984–2013. The model assumes that the biological utilization of dissolved oxygen is constant in both time and space in an attempt to isolate the role that physical processes play in modulating oxygen dynamics. Despite the simplicity of the model it demonstrates skill in simulating the observed inter-annual variability of hypoxic volume, capturing 50% of the observed variability in hypoxic volume (<2 mg L−1) for the month of July and 58% of the observed variability for the month of August, over the 30-yr period. Model skill increases throughout the summer suggesting that physical processes play a more important role in modulating hypoxia later in the summer. Model skill is better for hypoxic volumes than for anoxic volumes. In fact, a simple regression based on the integrated January–June Susquehanna River nitrogen load can explain more of the variability in the observed anoxic volumes than the model presented here. Model results suggest that the mean summer (June–August) wind speed is the single-most important physical variable contributing to variations in hypoxic volumes. Previous studies have failed to document the importance of summer wind speed because they have relied on winds measured at Patuxent Naval Air Station, which does not capture the observed inter-annual variations in wind speed that are observed by stations that directly measure wind over the waters of Chesapeake Bay.
    Description
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2016. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 61 (2016): 2243–2260, doi:10.1002/lno.10372.
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    Suggested Citation
    Limnology and Oceanography 61 (2016): 2243–2260
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo