Estimating the recharge properties of the deep ocean using noble gases and helium isotopes
Date
2016-08-18Author
Loose, Brice
Concept link
Jenkins, William J.
Concept link
Moriarty, Roisin
Concept link
Brown, Peter
Concept link
Jullion, Loic
Concept link
Naveira Garabato, Alberto C.
Concept link
Valdes, Sinhue Torres
Concept link
Hoppema, Mario
Concept link
Ballentine, Christopher J.
Concept link
Meredith, Michael P.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/8562As published
https://doi.org/10.1002/2016JC011809DOI
10.1002/2016JC011809Keyword
Meridional overturning circulation; Glacial meltwater; Ocean carbon cycle Southern Ocean upwelling; Sea ice processesAbstract
The distribution of noble gases and helium isotopes in the dense shelf waters of Antarctica reflects the boundary conditions near the ocean surface: air-sea exchange, sea ice formation, and subsurface ice melt. We use a nonlinear least squares solution to determine the value of the recharge temperature and salinity, as well as the excess air injection and glacial meltwater content throughout the water column and in the precursor to Antarctic Bottom Water. The noble gas-derived recharge temperature and salinity in the Weddell Gyre are −1.95°C and 34.95 psu near 5500 m; these cold, salty recharge values are a result of surface cooling as well as brine rejection during sea ice formation in Antarctic polynyas. In comparison, the global value for deep water recharge temperature is −0.44°C at 5500 m, which is 1.5°C warmer than the southern hemisphere deep water recharge temperature, reflecting a distinct contribution from the north Atlantic. The contrast between northern and southern hemisphere recharge properties highlights the impact of sea ice formation on setting the gas properties in southern sourced deep water. Below 1000 m, glacial meltwater averages 3.5‰ by volume and represents greater than 50% of the excess neon and argon found in the water column. These results indicate glacial melt has a nonnegligible impact on the atmospheric gas content of Antarctic Bottom Water.
Description
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 5959–5979, doi:10.1002/2016JC011809.
Collections
Suggested Citation
Journal of Geophysical Research: Oceans 121 (2016): 5959–5979The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International
Related items
Showing items related by title, author, creator and subject.
-
Ocean Network Information Center (OCEANIC) developing an online ocean information system
Churgin, James (IAMSLIC, 1989) -
Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean : a modeling study
Arruda, R.; Calil, Paulo H. R.; Bianchi, A. A.; Doney, Scott C.; Gruber, Nicolas; Lima, Ivan D.; Turi, G. (Copernicus Publications on behalf of the European Geosciences Union, 2015-10-12)We use an eddy-resolving, regional ocean biogeochemical model to investigate the main variables and processes responsible for the climatological spatio-temporal variability of pCO2 and the air-sea CO2 fluxes in the ... -
Understanding the ocean carbon and sulfur cycles in the context of a variable ocean : a study of anthropogenic carbon storage and dimethylsulfide production in the Atlantic Ocean
Levine, Naomi M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2010-02)Anthropogenic activity is rapidly changing the global climate through the emission of carbon dioxide. Ocean carbon and sulfur cycles have the potential to impact global climate directly and through feedback loops. Numerical ...