Forum for Arctic Modeling and Observational Synthesis (FAMOS) : past, current, and future activities
Date
2016-06-03Author
Proshutinsky, Andrey
Concept link
Steele, Michael
Concept link
Timmermans, Mary-Louise
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/8480As published
https://doi.org/10.1002/2016JC011898DOI
10.1002/2016JC011898Keyword
Introduction; Arctic; ModelingAbstract
The overall goal of the Forum for Arctic Modeling and Observational Synthesis (FAMOS) community activities reported in this special issue is to enhance understanding of processes and mechanisms driving Arctic Ocean marine and sea ice changes, and the consequences of those changes especially in biogeochemical and ecosystem studies. Major 2013–2015 FAMOS accomplishments to date are: identification of consistent errors across Arctic regional models; approaches to reduce these errors, and recommendations for the most effective coupled sea ice-ocean models for use in fully coupled regional and global climate models. 2013–2015 FAMOS coordinated analyses include many process studies, using models together with observations to investigate: dynamics and mechanisms responsible for drift, deformation and thermodynamics of sea ice; pathways and mechanisms driving variability of the Atlantic, Pacific and river waters in the Arctic Ocean; processes of freshwater accumulation and release in the Beaufort Gyre; the fate of melt water from Greenland; characteristics of ocean eddies; biogeochemistry and ecosystem processes and change, climate variability, and predictability. Future FAMOS collaborations will focus on employing models and conducting observations at high and very high spatial and temporal resolution to investigate the role of subgrid-scale processes in regional Arctic Ocean and coupled ice-ocean and atmosphere-ice-ocean models.
Description
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 3803–3819, doi:10.1002/2016JC011898.
Collections
Suggested Citation
Journal of Geophysical Research: Oceans 121 (2016): 3803–3819The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International
Related items
Showing items related by title, author, creator and subject.
-
Evaluation of Arctic sea ice thickness simulated by Arctic Ocean Model Intercomparison Project models
Johnson, Mark; Proshutinsky, Andrey; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nikolay; Kwok, Ron; Maslowski, Wieslaw; Hakkinen, Sirpa M. A.; Ashik, Igor M.; de Cuevas, Beverly (American Geophysical Union, 2012-03-15)Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004–2008); airborne electromagnetic measurements ... -
Recent advances in Arctic ocean studies employing models from the Arctic Ocean Model Intercomparison Project
Proshutinsky, Andrey; Aksenov, Yevgeny; Kinney, Jaclyn Clement; Gerdes, Rudiger; Golubeva, Elena; Holland, David; Holloway, Greg; Jahn, Alexandra; Johnson, Mark; Popova, Ekaterina E.; Steele, Michael; Watanabe, Eiji (Oceanography Society, 2011-09)Observational data show that the Arctic Ocean has significantly and rapidly changed over the last few decades, which is unprecedented in the observational record. Air and water temperatures have increased, sea ice volume ... -
Arctic pathways of Pacific Water : Arctic Ocean Model Intercomparison experiments
Aksenov, Yevgeny; Karcher, Michael; Proshutinsky, Andrey; Gerdes, Rudiger; de Cuevas, Beverly; Golubeva, Elena; Kauker, Frank; Nguyen, An T.; Platov, Gennady A.; Wadley, Martin; Watanabe, Eiji; Coward, Andrew C.; Nurser, A. J. George (John Wiley & Sons, 2016-01-08)Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood ...