ITAG : an eco-sensor for fine-scale behavioral measurements of soft-bodied marine invertebrates

Date
2015-09-28Author
Mooney, T. Aran
Concept link
Katija, Kakani
Concept link
Shorter, K. Alex
Concept link
Hurst, Thomas P.
Concept link
Fontes, Jorge
Concept link
Afonso, Pedro
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/8426As published
https://doi.org/10.1186/s40317-015-0076-1DOI
10.1186/s40317-015-0076-1Keyword
Jellyfish; Cephalopod; Activity pattern; Activity pattern; Climate; High-temporal resolution; SensoryAbstract
Soft-bodied marine invertebrates comprise a keystone component of ocean ecosystems; however, we know little of their behaviors and physiological responses within their natural habitat. Quantifying ocean conditions and measuring organismal responses to the physical environment is vital to understanding the species or ecosystem-level influences of a changing ocean.
Here we describe a novel, soft-bodied invertebrate eco-sensor tag (the ITAG), its trial attachments to squid and jellyfish, and the fine-scale behavioral measurements recorded on captive animals. Tags were deployed on five jellyfish (Aurelia aurita) and eight squid (Loligo forbesi) in laboratory conditions for up to 24 h. Using concurrent video and tag data, movement signatures for specific behaviors were identified. These behaviors included straight swimming (for jellyfish), and finning, jetting, direction reversal and turning (for squid). Overall activity levels were quantified using the root-mean-squared magnitude of acceleration, and finning was found to be the dominant squid swimming gait during captive squid experiments. External light sensors on the ITAG were used to compare squid swimming activity relative to ambient light across a ca. 20-h trial. The deployments revealed that while swimming was continuous for captive squid, energetically costly swimming behaviors (i.e., jetting and rapid direction reversals) occurred infrequently. These data reflect the usefulness of the ITAG to study trade-offs between behavior and energy expenditure in captive and wild animals.
These data demonstrate that eco-sensors with sufficiently high sampling rates can be applied to quantify behavior of soft-bodied taxa and changes in behavior due to interactions with the surrounding environment. The methods and tool described here open the door for substantial lab and field-based measurements of fine-scale behavior, physiology, and concurrent environmental parameters that will inform fisheries management, and elucidate the ecology of these important keystone taxa.
Description
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Animal Biotelemetry 3 (2015): 31, doi:10.1186/s40317-015-0076-1.
Collections
Suggested Citation
Animal Biotelemetry 3 (2015): 31The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Sexual patterns of monooxygenase function in the liver of marine teleosts and the regulation of activity by estradiol
Gray, Elisabeth S. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1988-05)Sex differences in hepatic microsomal cytochrome P-450 and monooxygenase activities were investigated in the marine teleosts scup (Stenotomus chrysops) and winter flounder (Pseudopleuronectes americanus). Microsomal ... -
An assessment of sampling biases across studies of diel activity patterns in marine ray-finned fishes (Actinopterygii)
Dornburg, Alex; Forrestel, Elisabeth J.; Moore, Jon A.; Iglesias, Teresa L.; Jones, Andrew; Rao, Leela; Warren, Dan L. (University of Miami - Rosenstiel School of Marine and Atmospheric Science, 2016-11-28)Understanding the promotion and regulation of circadian rhythms in marine fishes is important for studies spanning conservation, evolutionary biology, and physiology. Given numerous challenges inherent to quantifying ... -
Ambient noise and temporal patterns of boat activity in the US Virgin Islands National Park
Kaplan, Maxwell B.; Mooney, T. Aran (2015-06)Human activity is contributing increasing noise to marine ecosystems. Recent studies have examined the effects of boat noise on marine fishes, but there is limited understanding of the prevalence of this sound source. This ...