Characterization of the in situ magnetic architecture of oceanic crust (Hess Deep) using near-source vector magnetic data
Date
2016-06-16Author
Tominaga, Masako
Concept link
Tivey, Maurice A.
Concept link
MacLeod, Christopher J.
Concept link
Morris, Antony
Concept link
Lissenberg, C. Johan
Concept link
Shillington, Donna J.
Concept link
Ferrini, Vicki L.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/8417As published
https://doi.org/10.1002/2015JB012783DOI
10.1002/2015JB012783Keyword
Marine magnetics; Lower crust; Upper mantleAbstract
Marine magnetic anomalies are a powerful tool for detecting geomagnetic polarity reversals, lithological boundaries, topographic contrasts, and alteration fronts in the oceanic lithosphere. Our aim here is to detect lithological contacts in fast-spreading lower crust and shallow mantle by characterizing magnetic anomalies and investigating their origins. We conducted a high-resolution, near-bottom, vector magnetic survey of crust exposed in the Hess Deep “tectonic window” using the remotely operated vehicle (ROV) Isis during RRS James Cook cruise JC21 in 2008. Hess Deep is located at the western tip of the propagating rift of the Cocos-Nazca plate boundary near the East Pacific Rise (EPR) (2°15′N, 101°30′W). ROV Isis collected high-resolution bathymetry and near-bottom magnetic data as well as seafloor samples to determine the in situ lithostratigraphy and internal structure of a section of EPR lower crust and mantle exposed on the steep (~20°dipping) south facing slope just north of the Hess Deep nadir. Ten magnetic profiles were collected up the slope using a three-axis fluxgate magnetometer mounted on ROV Isis. We develop and extend the vertical magnetic profile (VMP) approach of Tivey (1996) by incorporating, for the first time, a three-dimensional vector analysis, leading to what we here termed as “vector vertical magnetic profiling” approach. We calculate the source magnetization distribution, the deviation from two dimensionality, and the strike of magnetic boundaries using both the total field Fourier-transform inversion approach and a modified differential vector magnetic analysis. Overall, coherent, long-wavelength total field anomalies are present with a strong magnetization contrast between the upper and lower parts of the slope. The total field anomalies indicate a coherently magnetized source at depth. The upper part of the slope is weakly magnetized and magnetic structure follows the underlying slope morphology, including a “bench” and lobe-shaped steps, imaged by microbathymetry. The lower part of the slope is strongly magnetized, with a gradual reduction in amplitude from east to west across the slope. Surface morphology and recent drilling results indicate that the slope has been affected by mass wasting, but the observation of internally coherent magnetization distributions within the upper and lower slopes suggest that the disturbance is surficial. We attribute the spatial differences in magnetization distribution to the combination of changes in in situ lithology and depth to the source. These survey lines document the first magnetic profiles that capture the gabbro-ultramafic and possibly dike-gabbro boundaries in fast-spreading lower crust.
Description
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Solid Earth 121 (2016): 4130–4146, doi:10.1002/2015JB012783.
Collections
Suggested Citation
Journal of Geophysical Research: Solid Earth 121 (2016): 4130–4146The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Magnetic mineral populations in lower oceanic crustal gabbros (Atlantis Bank, SW Indian Ridge): implications for marine magnetic anomalies
Bowles, Julie A.; Morris, Antony; Tivey, Maurice A.; Lascu, Ioan (American Geophysical Union, 2020-02-28)To learn more about magnetic properties of the lower ocean crust and its contributions to marine magnetic anomalies, gabbro samples were collected from International Ocean Discovery Program Hole U1473A at Atlantis Bank on ... -
Revised Pacific M-anomaly geomagnetic polarity timescale
Tominaga, Masako; Sager, William W. (John Wiley & Sons, 2010-05-12)The current M-anomaly geomagnetic polarity timescale (GPTS) is mainly based on the Hawaiian magnetic lineations in the Pacific Ocean. M-anomaly GPTS studies to date have relied on a small number of magnetic profiles, a ... -
Investigation of a marine magnetic polarity reversal boundary in cross section at the northern boundary of the Kane Megamullion, Mid-Atlantic Ridge, 23°40′N
Xu, Min; Tivey, Maurice A. (John Wiley & Sons, 2016-05-12)Near-bottom magnetic field measurements made by the submersible Nautile during the 1992 Kanaut Expedition define the cross-sectional geometry of magnetic polarity reversal boundaries and the vertical variation of crustal ...