• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Air-sea interaction in the Bay of Bengal

    Thumbnail
    View/Open
    29-2_weller.pdf (1.789Mb)
    Date
    2016-06
    Author
    Weller, Robert A.  Concept link
    Farrar, J. Thomas  Concept link
    Buckley, Jared  Concept link
    Mathew, Simi  Concept link
    Venkatesan, Ramasamy  Concept link
    Lekha, J. Sree  Concept link
    Chaudhuri, Dipanjan  Concept link
    Kumar, N. Suresh  Concept link
    Kumar, B. Praveen  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/8309
    As published
    https://doi.org/10.5670/oceanog.2016.36
    DOI
    10.5670/oceanog.2016.36
    Abstract
    Recent observations of surface meteorology and exchanges of heat, freshwater, and momentum between the ocean and the atmosphere in the Bay of Bengal are presented. These observations characterize air-sea interaction at 18°N, 89.5°E from December 2014 to January 2016 and also at other locations in the northern Bay of Bengal. Monsoonal variability dominated the records, with winds to the northeast in summer and to the southwest in winter. This variability included a strong annual cycle in the atmospheric forcing of the ocean in the Bay of Bengal, with the winter monsoon marked by sustained ocean heat loss resulting in ocean cooling, and the summer monsoon marked by strong storm events with dark skies and rain that also resulted in ocean cooling. The spring intermonsoon was a period of clear skies and low winds, when strong solar heating and weak wind-driven mixing led to ocean warming. The fall intermonsoon was a transitional period, with some storm events but also with enough clear skies and sunlight that ocean surface temperature rose again. Mooring and shipboard observations are used to examine the ability of model-based surface fluxes to represent air-sea interaction in the Bay of Bengal; the model-based fluxes have significant errors. The surface forcing observed at 18°N is also used together with a one-dimensional ocean model to illustrate the potential for local air-sea interaction to drive upper-ocean variability in the Bay of Bengal.
    Description
    Author Posting. © The Oceanography Society, 2016. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 29, no. 2 (2016): 28–37, doi:10.5670/oceanog.2016.36.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Oceanography 29, no. 2 (2016): 28–37
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      What controls seasonal evolution of sea surface temperature in the Bay of Bengal? Mixed layer heat budget analysis using moored buoy observations along 90°E 

      Thangaprakash, V. P.; Girishkumar, M. S.; Suprit, K.; Kumar, N. Suresh; Chaudhuri, Dipanjan; Dinesh, K.; Kumar, Ashok; Shivaprasad, S.; Ravichandran, M.; Farrar, J. Thomas; Sundar, R.; Weller, Robert A. (The Oceanography Society, 2016-06)
      Continuous time-series measurements of near surface meteorological and ocean variables obtained from Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) moorings at 15°N, 90°E; 12°N, ...
    • Thumbnail

      Seasonal-to-interannual prediction of North American coastal marine ecosystems: forecast methods, mechanisms of predictability, and priority developments 

      Jacox, Michael; Alexander, Michael A.; Siedlecki, Samantha A.; Chen, Ke; Kwon, Young-Oh; Brodie, Stephanie; Ortiz, Ivonne; Tommasi, Desiree; Widlansky, Matthew J.; Barrie, Daniel; Capotondi, Antonietta; Cheng, Wei; Di Lorenzo, Emanuele; Edwards, Christopher; Fiechter, Jerome; Fratantoni, Paula S.; Hazen, Elliott L.; Hermann, Albert J.; Kumar, Arun; Miller, Arthur J.; Pirhalla, Douglas; Pozo Buil, Mercedes; Ray, Sulagna; Sheridan, Scott; Subramanian, Aneesh C.; Thompson, Philip; Thorne, Lesley; Annamalai, Hariharasubramanian; Aydin, Kerim; Bograd, Steven; Griffis, Roger B.; Kearney, Kelly; Kim, Hyemi; Mariotti, Annarita; Merrifield, Mark; Rykaczewski, Ryan R. (Elsevier, 2020-02-20)
      Marine ecosystem forecasting is an area of active research and rapid development. Promise has been shown for skillful prediction of physical, biogeochemical, and ecological variables on a range of timescales, suggesting ...
    • Thumbnail

      Steering operational synergies in terrestrial observation networks : opportunity for advancing Earth system dynamics modelling 

      Baatz, Roland; Sullivan, Pamela L.; Li, Li; Weintraub, Samantha R.; Loescher, Henry W.; Mirtl, Michael; Groffman, Peter M.; Wall, Diana H.; Young, Michael; White, Tim; Wen, Hang; Zacharias, Steffen; Kühn, Ingolf; Tang, Jianwu; Gaillardet, Jerome; Braud, Isabelle; Flores, Alejandro N.; Kumar, Praveen; Lin, Henry; Ghezzehei, Teamrat; Jones, Julia; Gholz, Henry L.; Vereecken, Harry; Van Looy, Kris (Copernicus Publications on behalf of the European Geosciences Union, 2018-05-23)
      Advancing our understanding of Earth system dynamics (ESD) depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo