Mechanisms of increased Trichodesmium fitness under iron and phosphorus co-limitation in the present and future ocean

Date
2016-06-27Author
Walworth, Nathan G.
Concept link
Fu, Fei-Xue
Concept link
Webb, Eric A.
Concept link
Saito, Mak A.
Concept link
Moran, Dawn M.
Concept link
Mcllvin, Matthew R.
Concept link
Lee, Michael D.
Concept link
Hutchins, David A.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/8095As published
https://doi.org/10.1038/ncomms12081DOI
10.1038/ncomms12081Abstract
Nitrogen fixation by cyanobacteria supplies critical bioavailable nitrogen to marine ecosystems worldwide; however, field and lab data have demonstrated it to be limited by iron, phosphorus and/or CO2. To address unknown future interactions among these factors, we grew the nitrogen-fixing cyanobacterium Trichodesmium for 1 year under Fe/P co-limitation following 7 years of both low and high CO2 selection. Fe/P co-limited cell lines demonstrated a complex cellular response including increased growth rates, broad proteome restructuring and cell size reductions relative to steady-state growth limited by either Fe or P alone. Fe/P co-limitation increased abundance of a protein containing a conserved domain previously implicated in cell size regulation, suggesting a similar role in Trichodesmium. Increased CO2 further induced nutrient-limited proteome shifts in widespread core metabolisms. Our results thus suggest that N2-fixing microbes may be significantly impacted by interactions between elevated CO2 and nutrient limitation, with broad implications for global biogeochemical cycles in the future ocean.
Description
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 7 (2016): 12081, doi:10.1038/ncomms12081.
Collections
Suggested Citation
Nature Communications 7 (2016): 12081The following license files are associated with this item: