Spring plankton dynamics in the Eastern Bering Sea, 1971–2050 : mechanisms of interannual variability diagnosed with a numerical model
Date
2016-02-20Author
Banas, Neil S.
Concept link
Zhang, Jinlun
Concept link
Campbell, Robert G.
Concept link
Sambrotto, Raymond N.
Concept link
Lomas, Michael W.
Concept link
Sherr, Evelyn B.
Concept link
Sherr, Barry F.
Concept link
Ashjian, Carin J.
Concept link
Stoecker, Diane K.
Concept link
Lessard, Evelyn J.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/7994As published
https://doi.org/10.1002/2015JC011449DOI
10.1002/2015JC011449Keyword
Phytoplankton bloom; Climate change; Bering Sea; Microzooplankton; Ecosystem model; PhenologyAbstract
A new planktonic ecosystem model was constructed for the Eastern Bering Sea based on observations from the 2007–2010 BEST/BSIERP (Bering Ecosystem Study/Bering Sea Integrated Ecosystem Research Program) field program. When run with forcing from a data-assimilative ice-ocean hindcast of 1971–2012, the model performs well against observations of spring bloom time evolution (phytoplankton and microzooplankton biomass, growth and grazing rates, and ratios among new, regenerated, and export production). On the southern middle shelf (57°N, station M2), the model replicates the generally inverse relationship between ice-retreat timing and spring bloom timing known from observations, and the simpler direct relationship between the two that has been observed on the northern middle shelf (62°N, station M8). The relationship between simulated mean primary production and mean temperature in spring (15 February to 15 July) is generally positive, although this was found to be an indirect relationship which does not continue to apply across a future projection of temperature and ice cover in the 2040s. At M2, the leading direct controls on total spring primary production are found to be advective and turbulent nutrient supply, suggesting that mesoscale, wind-driven processes—advective transport and storminess—may be crucial to long-term trends in spring primary production in the southeastern Bering Sea, with temperature and ice cover playing only indirect roles. Sensitivity experiments suggest that direct dependence of planktonic growth and metabolic rates on temperature is less significant overall than the other drivers correlated with temperature described above.
Description
Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 1476–1501, doi:10.1002/2015JC011449.
Collections
Suggested Citation
Journal of Geophysical Research: Oceans 121 (2016): 1476–1501Related items
Showing items related by title, author, creator and subject.
-
Climate variability, oceanography, bowhead whale distribution, and Iñupiat subsistence whaling near Barrow, Alaska
Ashjian, Carin J.; Braund, Stephen R.; Campbell, Robert G.; George, John C.; Kruse, Jack; Maslowski, Wieslaw; Moore, Sue E.; Nicolson, Craig R.; Okkonen, Stephen R.; Sherr, Barry F.; Sherr, Evelyn B.; Spitz, Yvette H. (Arctic Institute of North America, 2010-06)The annual migration of bowhead whales (Balaena mysticetus) past Barrow, Alaska, has provided subsistence hunting to Iñupiat for centuries. Bowheads recurrently feed on aggregations of zooplankton prey near Barrow in autumn. ... -
Coherent patterns in bacterial growth, growth efficiency, and leucine metabolism along a northeastern Pacific inshore-offshore transect
del Giorgio, Paul A.; Condon, Robert H.; Bouvier, Thierry; Longnecker, Krista; Bouvier, Corinne; Sherr, Evelyn B.; Gasol, Josep M. (Association for the Sciences of Limnology and Oceanography, 2011-01)We investigated the patterns in bacterial growth, production, respiration, growth efficiency (BGE), and bacterial leucine respiration and C-to-leucine yield (i.e., conversion factor [CF]) along a transect off the coast of ... -
Underway MET data collected on multiple GLOBEC Long Term Observation Program (LTOP) cruises aboard R/V Wecoma in the Northeast Pacific from 1999-2003
Smith, Robert; Huyer, Adriana; Peterson, William T.; Sherr, Evelyn; Barth, Jack; Fleischbein, Jane (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-02-01)Underway MET data collected on GLOBEC Long Term Observation Program (LTOP) cruises (1998-2004) aboard R/V Wecoma. Data are preliminary. No error-checking or in-situ calibrations (except for salinity) have been performed. ...