Predicting RAD-seq marker numbers across the eukaryotic tree of life
Date
2015-11-03Author
Herrera, Santiago
Concept link
Reyes-Herrera, Paula H.
Concept link
Shank, Timothy M.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/7718As published
https://doi.org/10.1093/gbe/evv210DOI
10.1093/gbe/evv210Keyword
RAD-seq; Reduced representation sequencing; PredRAD; Experimental design; Genome size prediction; Restriction recognition sequence probabilityAbstract
High-throughput sequencing of reduced representation libraries obtained through digestion with restriction enzymes—generically known as restriction site associated DNA sequencing (RAD-seq)—is a common strategy to generate genome-wide genotypic and sequence data from eukaryotes. A critical design element of any RAD-seq study is knowledge of the approximate number of genetic markers that can be obtained for a taxon using different restriction enzymes, as this number determines the scope of a project, and ultimately defines its success. This number can only be directly determined if a reference genome sequence is available, or it can be estimated if the genome size and restriction recognition sequence probabilities are known. However, both scenarios are uncommon for nonmodel species. Here, we performed systematic in silico surveys of recognition sequences, for diverse and commonly used type II restriction enzymes across the eukaryotic tree of life. Our observations reveal that recognition sequence frequencies for a given restriction enzyme are strikingly variable among broad eukaryotic taxonomic groups, being largely determined by phylogenetic relatedness. We demonstrate that genome sizes can be predicted from cleavage frequency data obtained with restriction enzymes targeting “neutral” elements. Models based on genomic compositions are also effective tools to accurately calculate probabilities of recognition sequences across taxa, and can be applied to species for which reduced representation data are available (including transcriptomes and neutral RAD-seq data sets). The analytical pipeline developed in this study, PredRAD (https://github.com/phrh/PredRAD), and the resulting databases constitute valuable resources that will help guide the design of any study using RAD-seq or related methods.
Description
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Genome Biology and Evolution 7 (2015): 3207-3225, doi:10.1093/gbe/evv210.
Collections
Suggested Citation
Genome Biology and Evolution 7 (2015): 3207-3225The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Attribution-NonCommercial 4.0 International
Related items
Showing items related by title, author, creator and subject.
-
Seascape and life-history traits do not predict self-recruitment in a coral reef fish
Herrera, Marcela; Nanninga, Gerrit; Planes, Serge; Jones, Geoffrey P.; Thorrold, Simon R.; Saenz-Agudelo, Pablo; Almany, Glenn R.; Berumen, Michael L. (The Royal Society, 2016-08-09)The persistence and resilience of many coral reef species are dependent on rates of connectivity among sub-populations. However, despite increasing research efforts, the spatial scale of larval dispersal remains unpredictable ... -
Amino acid sequence of the ligand-binding domain of the aryl hydrocarbon receptor 1 predicts sensitivity of wild birds to effects of dioxin-like compounds
Farmahin, Reza; Manning, Gillian E.; Crump, Doug; Wu, Dongmei; Mundy, Lukas J.; Jones, Stephanie P.; Hahn, Mark E.; Karchner, Sibel I.; Giesy, John P.; Bursian, Steven J.; Zwiernik, Matthew J.; Fredricks, Timothy B.; Kennedy, Sean W. (2012-07-17)The sensitivity of avian species to the toxic effects of dioxin-like compounds (DLCs) varies up to 1000-fold among species and this variability has been associated with inter-species differences in aryl hydrocarbon receptor ... -
Exploring the ecology of deep-sea hydrothermal vents in a metacommunity framework
Mullineaux, Lauren S.; Metaxas, Anna; Beaulieu, Stace E.; Bright, Monika; Gollner, Sabine; Grupe, Benjamin; Herrera, Santiago; Kellner, Julie B.; Levin, Lisa A.; Mitarai, Satoshi; Neubert, Michael G.; Thurnherr, Andreas M.; Tunnicliffe, Verena; Watanabe, Hiromi K.; Won, Yong-Jin (Frontiers Media, 2018-02-21)Species inhabiting deep-sea hydrothermal vents are strongly influenced by the geological setting, as it provides the chemical-rich fluids supporting the food web, creates the patchwork of seafloor habitat, and generates ...