Mechanisms of tidal oscillatory salt transport in a partially stratified estuary

View/ Open
Date
2015-11Author
Wang, Tao
Concept link
Geyer, W. Rockwell
Concept link
Engel, Patricia A.
Concept link
Jiang, Wensheng
Concept link
Feng, Shizuo
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/7685As published
https://doi.org/10.1175/JPO-D-15-0031.1DOI
10.1175/JPO-D-15-0031.1Keyword
Geographic location/entity; Estuaries; Circulation/ Dynamics; Baroclinic flows; Dispersion; Shear structure/flows; Atm/Ocean Structure/ Phenomena; Diapycnal mixing; Models and modeling; Regional modelsAbstract
Tidal oscillatory salt transport, induced by the correlation between tidal variations in salinity and velocity, is an important term for the subtidal salt balance under the commonly used Eulerian method of salt transport decomposition. In this paper, its mechanisms in a partially stratified estuary are investigated with a numerical model of the Hudson estuary. During neap tides, when the estuary is strongly stratified, the tidal oscillatory salt transport is mainly due to the hydraulic response of the halocline to the longitudinal variation of topography. This mechanism does not involve vertical mixing, so it should not be regarded as oscillatory shear dispersion, but instead it should be regarded as advective transport of salt, which results from the vertical distortion of exchange flow obtained in the Eulerian decomposition by vertical fluctuations of the halocline. During spring tides, the estuary is weakly stratified, and vertical mixing plays a significant role in the tidal variation of salinity. In the spring tide regime, the tidal oscillatory salt transport is mainly due to oscillatory shear dispersion. In addition, the transient lateral circulation near large channel curvature causes the transverse tilt of the halocline. This mechanism has little effect on the cross-sectionally integrated tidal oscillatory salt transport, but it results in an apparent left–right cross-channel asymmetry of tidal oscillatory salt transport. With the isohaline framework, tidal oscillatory salt transport can be regarded as a part of the net estuarine salt transport, and the Lagrangian advective mechanism and dispersive mechanism can be distinguished.
Description
Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2773–2789, doi:10.1175/JPO-D-15-0031.1.
Collections
Suggested Citation
Journal of Physical Oceanography 45 (2015): 2773–2789Related items
Showing items related by title, author, creator and subject.
-
Model behavior and sensitivity in an application of the Cohesive Bed Component of the Community Sediment Transport Modeling System for the York River estuary, VA, USA
Fall, Kelsey A.; Harris, Courtney K.; Friedrichs, Carl T.; Rinehimer, J. Paul; Sherwood, Christopher R. (MDPI AG, 2014-05-19)The Community Sediment Transport Modeling System (CSTMS) cohesive bed sub-model that accounts for erosion, deposition, consolidation, and swelling was implemented in a three-dimensional domain to represent the York River ... -
Single-cell physiological structure and growth rates of heterotrophic bacteria in a temperate estuary (Waquoit Bay, Massachusetts)
Moran, Xose Anxelu G.; Ducklow, Hugh W.; Erickson, Matthew (Association for the Sciences of Limnology and Oceanography, 2011-01)Flow cytometric determinations of membrane integrity, nucleic acid content, and respiratory activity were combined with dilution cultures in Waquoit Bay Estuary (Massachusetts) to estimate specific growth rates of total, ... -
Subtidal salinity and velocity in the Hudson River estuary : observations and modeling
Ralston, David K.; Geyer, W. Rockwell; Lerczak, James A. (American Meteorological Society, 2008-04)A tidally and cross-sectionally averaged model based on the temporal evolution of the quasi-steady Hansen and Rattray equations is applied to simulate the salinity distribution and vertical exchange flow along the Hudson ...