• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Winter-to-summer precipitation phasing in southwestern North America : a multicentury perspective from paleoclimatic model-data comparisons

    Thumbnail
    View/Open
    Coats_et_al-2015-Journal_of_Geophysical_Research__Atmospheres.pdf (1.691Mb)
    Date
    2015-08-19
    Author
    Coats, Sloan  Concept link
    Smerdon, Jason E.  Concept link
    Seager, Richard  Concept link
    Griffin, Daniel  Concept link
    Cook, Benjamin I.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/7633
    As published
    https://doi.org/10.1002/2015JD023085
    DOI
    10.1002/2015JD023085
    Keyword
     Paleoclimate; North American monsoon; Teleconnection 
    Abstract
    The phasing of winter-to-summer precipitation anomalies in the North American monsoon (NAM) region 2 (113.25°W–107.75°W, 30°N–35.25°N—NAM2) of southwestern North America is analyzed in fully coupled simulations of the Last Millennium and compared to tree ring reconstructed winter and summer precipitation variability. The models simulate periods with in-phase seasonal precipitation anomalies, but the strength of this relationship is variable on multidecadal time scales, behavior that is also exhibited by the reconstructions. The models, however, are unable to simulate periods with consistently out-of-phase winter-to-summer precipitation anomalies as observed in the latter part of the instrumental interval. The periods with predominantly in-phase winter-to-summer precipitation anomalies in the models are significant against randomness, and while this result is suggestive of a potential for dual-season drought on interannual and longer time scales, models do not consistently exhibit the persistent dual-season drought seen in the dendroclimatic reconstructions. These collective findings indicate that model-derived drought risk assessments may underestimate the potential for dual-season drought in 21st century projections of hydroclimate in the American Southwest and parts of Mexico.
    Description
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Atmospheres 120 (2015): 8052–8064, doi:10.1002/2015JD023085.
    Collections
    • Geology and Geophysics (G&G)
    Suggested Citation
    Journal of Geophysical Research: Atmospheres 120 (2015): 8052–8064
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      The metabolic response of thecosome pteropods from the North Atlantic and North Pacific oceans to high CO2 and low O2 

      Maas, Amy E.; Lawson, Gareth L.; Wang, Zhaohui Aleck (Copernicus Publications on behalf of the European Geosciences Union, 2016-11-17)
      As anthropogenic activities directly and indirectly increase carbon dioxide (CO2) and decrease oxygen (O2) concentrations in the ocean system, it becomes important to understand how different populations of marine animals ...
    • Thumbnail

      The impact of the North Atlantic Oscillation on the uptake and accumulation of anthropogenic CO2 by North Atlantic Ocean mode waters 

      Levine, Naomi M.; Doney, Scott C.; Lima, Ivan D.; Wanninkhof, Rik; Bates, Nicholas R.; Feely, Richard A. (American Geophysical Union, 2011-09-21)
      The North Atlantic Ocean accounts for about 25% of the global oceanic anthropogenic carbon sink. This basin experiences significant interannual variability primarily driven by the North Atlantic Oscillation (NAO). A suite ...
    • Thumbnail

      A science plan for a collaborative international research program on the coupled North Atlantic-Arctic system, a report of a Planning Workshop for an International Research Program on the Coupled North Atlantic-Arctic System developed from a workshop held in Arlington, VA 14-16 April 2014 

      Hofmann, Eileen E.; St. John, Mike; Benway, Heather M. (Ocean Carbon & Biogeochemistry Program, 2015)
      This North Atlantic-Arctic science plan is derived from an international workshop held in April 2014 with support from the National Science Foundation Division of Ocean Sciences and the European Union (EU). The workshop ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo