• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Submesoscale turbulence in the upper ocean

    Thumbnail
    View/Open
    Callies_thesis.pdf (6.513Mb)
    Date
    2016-02
    Author
    Callies, Joern  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/7570
    DOI
    10.1575/1912/7570
    Abstract
    Submesoscale flows, current systems 1–100 km in horizontal extent, are increasingly coming into focus as an important component of upper-ocean dynamics. A range of processes have been proposed to energize submesoscale flows, but which process dominates in reality must be determined observationally. We diagnose from observed flow statistics that in the thermocline the dynamics in the submesoscale range transition from geostrophic turbulence at large scales to inertia–gravity waves at small scales, with the transition scale depending dramatically on geographic location. A similar transition is shown to occur in the atmosphere, suggesting intriguing similarities between atmospheric and oceanic dynamics.We furthermore diagnose from upper-ocean observations a seasonal cycle in submesoscale turbulence: fronts and currents are more energetic in the deep wintertime mixed layer than in the summertime seasonal thermocline. This seasonal cycle hints at the importance of baroclinic mixed layer instabilities in energizing submesoscale turbulence in winter. To better understand this energization, three aspects of the dynamics of baroclinic mixed layer instabilities are investigated. First, we formulate a quasigeostrophic model that describes the linear and nonlinear evolution of these instabilities. The simple model reproduces the observed wintertime distribution of energy across scales and depth, suggesting it captures the essence of how the submesoscale range is energized in winter. Second, we investigate how baroclinic instabilities are affected by convection, which is generated by atmospheric forcing and dominates the mixed layer dynamics at small scales. It is found that baroclinic instabilities are remarkably resilient to the presence of convection and develop even when rapid overturns keep the mixed layer unstratified. Third, we discuss the restratification induced by baroclinic mixed layer instabilities. We show that the rate of restratification depends on characteristics of the baroclinic eddies themselves, a dependence not captured by a previously proposed parameterization. These insights sharpen our understanding of submesoscale dynamics and can help focus future inquiry into whether and how submesoscale flows influence the ocean’s role in climate.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution
    Collections
    • Physical Oceanography (PO)
    • WHOI Theses
    Suggested Citation
    Thesis: Callies, Joern, "Submesoscale turbulence in the upper ocean", 2016-02, DOI:10.1575/1912/7570, https://hdl.handle.net/1912/7570
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Stability of a coastal upwelling front over topography 

      Barth, John A. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1987-10)
      A two-layer shallow water equation model is used to investigate the linear stability of a coastal upwelling front. The model features a surface front near a coastal boundary and bottom topography which is an arbitrary ...
    • Thumbnail

      Seismic constraints on shallow crustal processes at the East Pacific Rise 

      Christeson, Gail L. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1994-02)
      This thesis is concerned with understanding how oceanic crust is emplaced at mid-ocean ridges. The emphasis is upon fast-spreading ridges, and the use of seismic techniques to image the uppermost several hundred meters ...
    • Thumbnail

      Where three oceans meet : the Algulhas retroflection region 

      Bennett, Sara L. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1988-09)
      The highly energetic Agulhas Retroflection region south of the African continent lies at the junction of the South Indian, South Atlantic, and Circumpolar Oceans. A new survey of the Agulhas Retroflection taken in March ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo