Evolution of a physical and biological front from upwelling to relaxation
Date
2015-08-08Author
Zhang, Yanwu
Concept link
Bellingham, James G.
Concept link
Ryan, John P.
Concept link
Godin, Michael A.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/7536As published
https://doi.org/10.1016/j.csr.2015.08.005DOI
10.1016/j.csr.2015.08.005Keyword
Fronts; Upwelling; Relaxation; Autonomous underwater vehicleAbstract
Fronts influence the structure and function of coastal marine ecosystems. Due to the complexity and dynamic nature of coastal environments and the small scales of frontal gradient zones, frontal research is difficult. To advance this challenging research we developed a method enabling an autonomous underwater vehicle (AUV) to detect and track fronts, thereby providing high-resolution observations in the moving reference frame of the front itself. This novel method was applied to studying the evolution of a frontal zone in the coastal upwelling environment of Monterey Bay, California, through a period of variability in upwelling intensity. Through 23 frontal crossings in four days, the AUV detected the front using real-time analysis of vertical thermal stratification to identify water types and the front between them, and the vehicle tracked the front as it moved more than 10 km offshore. The physical front coincided with a biological front between strongly stratified phytoplankton-enriched water inshore of the front, and weakly stratified phytoplankton-poor water offshore of the front. While stratification remained a consistent identifier, conditions on both sides of the front changed rapidly as regional circulation responded to relaxation of upwelling winds. The offshore water type transitioned from relatively cold and saline upwelled water to relatively warm and fresh coastal transition zone water. The inshore water type exhibited an order of magnitude increase in chlorophyll concentrations and an associated increase in oxygen and decrease in nitrate. It also warmed and freshened near the front, consistent with the cross-frontal exchange that was detected in the high-resolution AUV data. AUV-observed cross-frontal exchanges beneath the surface manifestation of the front emphasize the importance of AUV synoptic water column surveys in the frontal zone.
Description
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Continental Shelf Research 108 (2015): 55-64, doi:10.1016/j.csr.2015.08.005.
Collections
Suggested Citation
Continental Shelf Research 108 (2015): 55-64The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International
Related items
Showing items related by title, author, creator and subject.
-
Biophysical consequences of a relaxing Beaufort Gyre
Zhang, Jinlun; Spitz, Yvette H.; Steele, Michael; Ashjian, Carin J.; Campbell, Robert G.; Schweiger, Axel (American Geophysical Union, 2019-12-19)A biophysical model shows that Beaufort Gyre (BG) intensification in 2004–2016 is followed by relaxation in 2017–2018, based on a BG variability index. BG intensification leads to enhanced downwelling in the central Canada ... -
Spontaneous generation of near-inertial waves by the Kuroshio Front
Nagai, Takeyoshi; Tandon, Amit; Kunze, Eric; Mahadevan, Amala (American Meteorological Society, 2015-09)While near-inertial waves are known to be generated by atmospheric storms, recent observations in the Kuroshio Front find intense near-inertial internal-wave shear along sloping isopycnals, even during calm weather. Recent ... -
Is biological productivity enhanced at the New England shelfbreak front?
Zhang, Weifeng G.; McGillicuddy, Dennis J.; Gawarkiewicz, Glen G. (John Wiley & Sons, 2013-01-31)A two-dimensional (cross-shelf) numerical model of the mean seasonal circulation offshore of southern New England predicts upwelling at the shelfbreak front. Expected ramifications of this upwelling include enhancement of ...