Centennial changes of the global water cycle in CMIP5 models
Citable URI
https://hdl.handle.net/1912/7519As published
https://doi.org/10.1175/JCLI-D-15-0143.1DOI
10.1175/JCLI-D-15-0143.1Abstract
The global water cycle is predicted to intensify under various greenhouse gas emissions scenarios. Here the nature and strength of the expected changes for the ocean in the coming century are assessed by examining the output of several CMIP5 model runs for the periods 1990–2000 and 2090–2100 and comparing them to a dataset built from modern observations. Key elements of the water cycle, such as the atmospheric vapor transport, the evaporation minus precipitation over the ocean, and the surface salinity, show significant changes over the coming century. The intensification of the water cycle leads to increased salinity contrasts in the ocean, both within and between basins. Regional projections for several areas important to large-scale ocean circulation are presented, including the export of atmospheric moisture across the tropical Americas from Atlantic to Pacific Ocean, the freshwater gain of high-latitude deep water formation sites, and the basin averaged evaporation minus precipitation with implications for interbasin mass transports.
Description
Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 6489–6502, doi:10.1175/JCLI-D-15-0143.1.
Collections
Suggested Citation
Journal of Climate 28 (2015): 6489–6502Related items
Showing items related by title, author, creator and subject.
-
Effect of historical changes in land use and climate on the water budget of an urbanizing watershed
Claessens, Luc; Hopkinson, Charles S.; Rastetter, Edward B.; Vallino, Joseph J. (American Geophysical Union, 2006-03-25)We assessed the effects of historical (1931-1998) changes in both land-use and climate on the water budget of a rapidly urbanizing watershed, Ipswich River basin (IRB), in northeastern Massachusetts. Water diversions and ... -
How climate change affects extremes in maize and wheat yield in two cropping regions
Ummenhofer, Caroline C.; Xu, Hong; Twine, Tracy E.; Girvetz, Evan H.; McCarthy, Heather R.; Chhetri, Netra; Nicholas, Kimberly A. (American Meteorological Society, 2015-06-15)Downscaled climate model projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) were used to force a dynamic vegetation agricultural model (Agro-IBIS) and simulate yield responses to historical climate ... -
Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone
Reilly, John M.; Paltsev, Sergey; Felzer, Benjamin S.; Wang, X.; Kicklighter, David W.; Melillo, Jerry M.; Prinn, Ronald G.; Sarofim, Marcus C.; Sokolov, Andrei P.; Wang, C. (2006-01)Multiple environmental changes will have consequences for global vegetation. To the extent that crop yields and pasture and forest productivity are affected there can be important economic consequences. We examine the ...