• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    How climate change affects extremes in maize and wheat yield in two cropping regions

    Thumbnail
    View/Open
    jcli-d-13-00326%2E1.pdf (6.857Mb)
    Date
    2015-06-15
    Author
    Ummenhofer, Caroline C.  Concept link
    Xu, Hong  Concept link
    Twine, Tracy E.  Concept link
    Girvetz, Evan H.  Concept link
    McCarthy, Heather R.  Concept link
    Chhetri, Netra  Concept link
    Nicholas, Kimberly A.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/7382
    As published
    https://doi.org/10.1175/JCLI-D-13-00326.1
    DOI
    10.1175/JCLI-D-13-00326.1
    Keyword
     Australia; North America; Climate change; Climate models; Climate variability; Agriculture 
    Abstract
    Downscaled climate model projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) were used to force a dynamic vegetation agricultural model (Agro-IBIS) and simulate yield responses to historical climate and two future emissions scenarios for maize in the U.S. Midwest and wheat in southeastern Australia. In addition to mean changes in yield, the frequency of high- and low-yield years was related to changing local hydroclimatic conditions. Particular emphasis was on the seasonal cycle of climatic variables during extreme-yield years and links to crop growth. While historically high (low) yields in Iowa tend to occur during years with anomalous wet (dry) growing season, this is exacerbated in the future. By the end of the twenty-first century, the multimodel mean (MMM) of growing season temperatures in Iowa is projected to increase by more than 5°C, and maize yield is projected to decrease by 18%. For southeastern Australia, the frequency of low-yield years rises dramatically in the twenty-first century because of significant projected drying during the growing season. By the late twenty-first century, MMM growing season precipitation in southeastern Australia is projected to decrease by 15%, temperatures are projected to increase by 2.8°–4.5°C, and wheat yields are projected to decline by 70%. Results highlight the sensitivity of yield projections to the nature of hydroclimatic changes. Where future changes are uncertain, the sign of the yield change simulated by Agro-IBIS is uncertain as well. In contrast, broad agreement in projected drying over southern Australia across models is reflected in consistent yield decreases for the twenty-first century. Climatic changes of the order projected can be expected to pose serious challenges for continued staple grain production in some current centers of production, especially in marginal areas.
    Description
    Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 4653–4687, doi:10.1175/JCLI-D-13-00326.1.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Journal of Climate 28 (2015): 4653–4687
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone 

      Reilly, John M.; Paltsev, Sergey; Felzer, Benjamin S.; Wang, X.; Kicklighter, David W.; Melillo, Jerry M.; Prinn, Ronald G.; Sarofim, Marcus C.; Sokolov, Andrei P.; Wang, C. (2006-01)
      Multiple environmental changes will have consequences for global vegetation. To the extent that crop yields and pasture and forest productivity are affected there can be important economic consequences. We examine the ...
    • Thumbnail

      Antarctic penguin response to habitat change as Earth's troposphere reaches 2°C above preindustrial levels 

      Ainley, David G.; Russell, Joellen; Jenouvrier, Stephanie; Woehler, Eric; Lyver, Philip O'B.; Fraser, William R.; Kooyman, Gerald L. (Ecological Society of America, 2010-02)
      We assess the response of pack ice penguins, Emperor (Aptenodytes forsteri) and Adélie (Pygoscelis adeliae), to habitat variability and, then, by modeling habitat alterations, the qualitative changes to their populations, ...
    • Thumbnail

      An ocean-colour time series for use in climate studies: The experience of the ocean-colour climate change initiative (OC-CCI) 

      Sathyendranath, Shubha; Brewin, Robert J. W.; Brockmann, Carsten; Brotas, Vanda; Calton, Ben; Chuprin, Andrei; Cipollini, Paolo; Couto, André B.; Dingle, James; Doerffer, Roland; Donlon, Craig; Dowell, Mark; Farman, Alex; Grant, Michael; Groom, Steven; Horseman, Andrew; Jackson, Thomas; Krasemann, Hajo; Lavender, Samantha; Martinez-Vicente, Victor; Mazeran, Constant; Melin, Frederic; Moore, Timothy S.; Müller, Dagmar; Regner, Peter; Roy, Shovonlal; Steele, Chris J.; Steinmetz, François; Swinton, John; Taberner, Malcolm; Thompson, Adam; Valente, André; Zühlke, Marco; Brando, Vittorio; Feng, Hui; Feldman, Gene; Franz, Bryan A.; Frouin, Robert; Gould, Richard; Hooker, Stanford B.; Kahru, Mati; Kratzer, Susanne; Mitchell, B. Greg; Muller-Karger, Frank E.; Sosik, Heidi M.; Voss, Kenneth; Werdell, Jeremy; Platt, Trevor (MDPI, 2019-10-03)
      Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo