• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Marine Biological Laboratory
    • Ecosystems Center
    • View Item
    •   WHOAS Home
    • Marine Biological Laboratory
    • Ecosystems Center
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Evapotranspiration in Northern Eurasia : impact of forcing uncertainties on terrestrial ecosystem model estimates

    Thumbnail
    View/Open
    jgrd52054.pdf (3.289Mb)
    Date
    2015-04-03
    Author
    Liu, Yaling  Concept link
    Zhuang, Qianlai  Concept link
    Miralles, Diego  Concept link
    Pan, Zhihua  Concept link
    Kicklighter, David W.  Concept link
    Zhu, Qing  Concept link
    He, Yujie  Concept link
    Chen, Jiquan  Concept link
    Tchebakova, Nadja M.  Concept link
    Sirin, Andrey  Concept link
    Niyogi, Dev  Concept link
    Melillo, Jerry M.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/7310
    As published
    https://doi.org/10.1002/2014JD022531
    DOI
    10.1002/2014JD022531
    Keyword
     Evapotranspiration; Northern Eurasia; Terrestrial ecosystem model; Climate reanalysis; Forcing uncertainty 
    Abstract
    The ecosystems in Northern Eurasia (NE) play an important role in the global water cycle and the climate system. While evapotranspiration (ET) is a critical variable to understand this role, ET over this region remains largely unstudied. Using an improved version of the Terrestrial Ecosystem Model with five widely used forcing data sets, we examine the impact that uncertainties in climate forcing data have on the magnitude, variability, and dominant climatic drivers of ET for the period 1979–2008. Estimates of regional average ET vary in the range of 241.4–335.7 mm yr−1 depending on the choice of forcing data. This range corresponds to as much as 32% of the mean ET. Meanwhile, the spatial patterns of long-term average ET across NE are generally consistent for all forcing data sets. Our ET estimates in NE are largely affected by uncertainties in precipitation (P), air temperature (T), incoming shortwave radiation (R), and vapor pressure deficit (VPD). During the growing season, the correlations between ET and each forcing variable indicate that T is the dominant factor in the north and P in the south. Unsurprisingly, the uncertainties in climate forcing data propagate as well to estimates of the volume of water available for runoff (here defined as P-ET). While the Climate Research Unit data set is overall the best choice of forcing data in NE according to our assessment, the quality of these forcing data sets remains a major challenge to accurately quantify the regional water balance in NE.
    Description
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Atmospheres 120 (2015): 2647–2660, doi:10.1002/2014JD022531.
    Collections
    • Ecosystems Center
    Suggested Citation
    Journal of Geophysical Research: Atmospheres 120 (2015): 2647–2660
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century : a retrospective analysis with a process-based biogeochemistry model 

      Zhuang, Qianlai; Melillo, Jerry M.; Kicklighter, David W.; Prinn, Ronald G.; McGuire, A. David; Steudler, Paul A.; Felzer, Benjamin S.; Hu, Shaomin (American Geophysical Union, 2008-08-18)
      We develop and use a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4) emissions and consumption in high-latitude soils of the Northern Hemisphere have changed over the past century ...
    • Thumbnail

      Seasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska 

      Euskirchen, Eugenie; Bret-Harte, M. Syndonia; Scott, G. J.; Edgar, C.; Shaver, Gaius R. (Ecological Society of America, 2012-01-19)
      Understanding the carbon dioxide and water fluxes in the Arctic is essential for accurate assessment and prediction of the responses of these ecosystems to climate change. In the Arctic, there have been relatively few ...
    • Thumbnail

      A review of and perspectives on global change modeling for Northern Eurasia 

      Monier, Erwan; Kicklighter, David W.; Sokolov, Andrei P.; Zhuang, Qianlai; Sokolik, Irina; Lawford, Richard; Kappas, Martin; Paltsev, Sergey; Groisman, Pavel Ya (IOP Science, 2017-08-08)
      Northern Eurasia is made up of a complex and diverse set of physical, ecological, climatic and human systems, which provide important ecosystem services including the storage of substantial stocks of carbon in its terrestrial ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo