• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Using passive samplers to assess bioavailability, toxicity, and reactivity of hydrophobic organic chemicals (HOCs)

    Thumbnail
    View/Open
    Tcaciuc_thesis.pdf (21.85Mb)
    Date
    2015-06
    Author
    Tcaciuc, Alexandra P.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/7305
    DOI
    10.1575/1912/7305
    Keyword
     Marine pollution; Chemical oceanography 
    Abstract
    Hydrophobic organic chemicals (HOCs) are a class of environmental contaminants responsible for numerous acute and chronic health effects in humans and wildlife. This thesis illustrates three applications of polyethylene (PE) passive sampling, which enhance our toolbox for estimating environmental hazards associated with HOCs. First, we present a methodology that can be used to estimate the bioaccumulation potential of numerous organic chemicals based on passive sampling and comprehensive two dimensional gas chromatography (GC × GC). Using GC × GC retention times, we show that lipid-water and samplerwater partition coefficients can be estimated within a factor of 2 and 3, respectively. The method was then applied to estimate body burdens of various HOCs in benthic organisms from GC × GC analysis of PE equilibrated with contaminated sediment. Empirical observations of accumulation in the Nereis virens polychaete were in good agreement with PE-based predictions for PCBs, but were lower by at least an order of magnitude for other classes of HOCs (such as PAHs) presumably due to metabolism. Second, we applied the same methodology to a set of contaminated sediments and estimated the cumulative baseline toxicity associated with environmental mixtures of HOCs. The predictions were compared against empirical measurements of baseline toxicity using the water flea Daphnia magna. The estimated total body burdens of HOCs were in good agreement with measured toxicity, with toxicity occurring at body burdens larger than 30 mg/glipid. In contrast, the toxicity estimated based on priority pollutants severely underestimated the observed toxicity, emphasizing the importance of cumulative effects. Lastly, to advance our understanding of the processes that affect passive sampling results in situ (when they are operating away from equilibrium), a mathematical model was developed for reactive chemicals transferring between PE and sediment beds. The reaction diffusion model was used to infer in situ degradation rates of dichlorodiphenyltrichloroethane (DDT), which in the sediments of a freshwater lake were found to be between 0.09 and 0.9 d-1. A second mathematical model describing the kinetics of exchange between passive samplers and water was also developed, which can be used in both field (infinite baths) and laboratory (finite baths) conditions.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute Of Technology and the Woods Hole Oceanographic Institution June 2015
    Collections
    • WHOI Theses
    • Marine Chemistry and Geochemistry (MC&G)
    Suggested Citation
    Thesis: Tcaciuc, Alexandra P., "Using passive samplers to assess bioavailability, toxicity, and reactivity of hydrophobic organic chemicals (HOCs)", 2015-06, DOI:10.1575/1912/7305, https://hdl.handle.net/1912/7305
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      A model of the temporal and spatial distribution of carbon monoxide in the mixed layer 

      Kettle, A. James (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1994-06)
      A field experiment demonstrated the presence of a diurnal cycle in the concentration of carbon monoxide ([CO]) in the upper ocean at the BATS site. A series of laboratory experiments and numerical simulations were carried ...
    • Thumbnail

      Circulation in upper layers of southern North Atlantic deduced with use of isentropic analysis 

      Montgomery, Raymond B. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1938-08)
      Except for the presence in most localities of a shallow homogeneous surface layer and of a relatively homogeneous and deeper bottom layer, the oceans of the temperate and tropical regions are stratified and vertically ...
    • Thumbnail

      Coral reefs in the Anthropocene Ocean: novel insights from skeletal proxies of climate change, impacts, and resilience 

      Mollica, Nathaniel R. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2021-02)
      Anthropogenic emissions of greenhouse gases are driving rapid changes in ocean conditions. Shallow-water coral reefs are experiencing the brunt of these changes, including intensifying marine heatwaves (MHWs) and rapid ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo