Presynaptic nanodomains : a tale of two synapses
Citable URI
https://hdl.handle.net/1912/7231As published
https://doi.org/10.3389/fncel.2014.00455DOI
10.3389/fncel.2014.00455Keyword
Neurotransmitter release; Calcium signaling; Calcium channels; Presynaptic terminals; Synaptic vesicle traffickingAbstract
Here we summarize the evidence from two “giant” presynaptic terminals—the squid giant synapse and the mammalian calyx of Held—supporting the involvement of nanodomain calcium signals in triggering of neurotransmitter release. At the squid synapse, there are three main lines of experimental evidence for nanodomain signaling. First, changing the size of the unitary calcium channel current by altering external calcium concentration causes a non-linear change in transmitter release, while changing the number of open channels by broadening the presynaptic action potential causes a linear change in release. Second, low-affinity calcium indicators, calcium chelators, and uncaging of calcium all suggest that presynaptic calcium concentrations are as high as hundreds of micromolar, which is more compatible with a nanodomain type of calcium signal. Finally, neurotransmitter release is much less affected by the slow calcium chelator, ethylene glycol tetraacetic acid (EGTA), in comparison to the rapid chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid (BAPTA). Similarly, as the calyx of Held synapse matures, EGTA becomes less effective in attenuating transmitter release while the number of calcium channels required to trigger a single fusion event declines. This suggests a developmental transformation of microdomain to nanodomain coupling between calcium channels and transmitter release. Calcium imaging and uncaging experiments, in combination with simulations of calcium diffusion, indicate the peak calcium concentration seen by presynaptic calcium sensors reaches at least tens of micromolar at the calyx of Held. Taken together, data from these provide a compelling argument that nanodomain calcium signaling gates very rapid transmitter release.
Description
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Cellular Neuroscience 8 (2015): 455, doi:10.3389/fncel.2014.00455.
Collections
Suggested Citation
Frontiers in Cellular Neuroscience 8 (2015): 455The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Prolonged calcium influx after termination of light-induced calcium release in invertebrate photoreceptors
Gomez, Maria del Pilar; Nasi, Enrico (Rockefeller University Press, 2009-08-31)In microvillar photoreceptors, light stimulates the phospholipase C cascade and triggers an elevation of cytosolic Ca2+ that is essential for the regulation of both visual excitation and sensory adaptation. In some organisms, ... -
Visualizing calcium flux in freely moving nematode embryos
Ardiel, Evan L.; Kumar, Abhishek; Marbach, Joseph; Christensen, Ryan; Gupta, Rishi; Duncan, William; Daniels, Jonathan S.; Stuurman, Nico; Colón-Ramos, Daniel; Shroff, Hari (2017-02)The lack of physiological recordings from Caenorhabditis elegans embryos stands in stark contrast to the comprehensive anatomical and gene expression datasets already available. Using light-sheet fluorescence microscopy ... -
Voltage-gated calcium channel subunits from platyhelminths : potential role in praziquantel action
Jeziorski, Michael C.; Greenberg, Robert M. (2006-02-07)Voltage-gated calcium (Ca2+) channels provide the pathway for Ca2+ influxes that underlie Ca2+-dependent responses in muscles, nerves, and other excitable cells. They are also targets of a wide variety of drugs and toxins. ...