Show simple item record

dc.contributor.authorSitch, Stephen  Concept link
dc.contributor.authorFriedlingstein, Pierre  Concept link
dc.contributor.authorGruber, Nicolas  Concept link
dc.contributor.authorJones, S. D.  Concept link
dc.contributor.authorMurray-Tortarolo, G.  Concept link
dc.contributor.authorAhlstrom, Andreas P.  Concept link
dc.contributor.authorDoney, Scott C.  Concept link
dc.contributor.authorGraven, Heather  Concept link
dc.contributor.authorHeinze, Christoph  Concept link
dc.contributor.authorHuntingford, Chris  Concept link
dc.contributor.authorLevis, Samuel  Concept link
dc.contributor.authorLevy, Peter E.  Concept link
dc.contributor.authorLomas, Mark  Concept link
dc.contributor.authorPoulter, Benjamin  Concept link
dc.contributor.authorViovy, Nicolas  Concept link
dc.contributor.authorZaehle, Sonke  Concept link
dc.contributor.authorZeng, Ning  Concept link
dc.contributor.authorArneth, Almut  Concept link
dc.contributor.authorBonan, Gordon B.  Concept link
dc.contributor.authorBopp, Laurent  Concept link
dc.contributor.authorCanadell, Josep G.  Concept link
dc.contributor.authorChevallier, Frédéric  Concept link
dc.contributor.authorCiais, Philippe  Concept link
dc.contributor.authorEllis, Richard  Concept link
dc.contributor.authorGloor, Emanuel  Concept link
dc.contributor.authorPeylin, Philippe  Concept link
dc.contributor.authorPiao, S. L.  Concept link
dc.contributor.authorLe Quere, Corinne  Concept link
dc.contributor.authorSmith, Benjamin  Concept link
dc.contributor.authorZhu, Zaichun  Concept link
dc.contributor.authorMyneni, Ranga  Concept link
dc.identifier.citationBiogeosciences 12 (2015): 653-679en_US
dc.description© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 653-679, doi:10.5194/bg-12-653-2015.en_US
dc.description.abstractThe land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of −2.2 ± 0.2 Pg C yr−1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 and changes in growing season length on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counter\-act the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, as well as regarding the influence of land use and land cover changes on regional trends.en_US
dc.description.sponsorshipS. Sitch acknowledges financial support by RCUK through NERC (grant no. NE/J010154/). N. Gruber and C. Heinze acknowledge financial support by the European Commission through the EU FP7 projects CARBOCHANGE (grant no. 264879) and GEOCARBON (grant no. 283080). N. Gruber was additionally supported through ETH Zurich. S. C. Doney acknowledges support from the US National Science Foundation (NSF AGS-1048827). P. Friedlingstein, A. Arneth, and S. Zaehle acknowledge support by the European Commission through the EU FP7 project EMBRACE (grant no. 282672). A. Arneth and S. Sitch acknowledge the support of the European Commission-funded project LUC4C (grant no. 603542). The research leading to these results received funding from the European Community’s Seventh Framework Programme (FP7 2007–2013) under grant agreement no. 238366. A. Ahlström and B. Smith acknowledge funding through the Mistra Swedish Research Programme on Climate, Impacts and Adaptation (SWECIA). C. Heinze acknowledges support from NOTUR/NorStore projects NN2980K and NS2980K.en_US
dc.publisherCopernicus Publications on behalf of the European Geosciences Unionen_US
dc.rightsAttribution 3.0 Unported*
dc.titleRecent trends and drivers of regional sources and sinks of carbon dioxideen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 Unported
Except where otherwise noted, this item's license is described as Attribution 3.0 Unported