Long-term forest soil warming alters microbial communities in temperate forest soils
Date
2015-02-13Author
DeAngelis, Kristen M.
Concept link
Pold, Grace
Concept link
Topcuoglu, Begum D.
Concept link
van Diepen, Linda T. A.
Concept link
Varney, Rebecca M.
Concept link
Blanchard, Jeffrey L.
Concept link
Melillo, Jerry M.
Concept link
Frey, Serita D.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/7209As published
https://doi.org/10.3389/fmicb.2015.00104DOI
10.3389/fmicb.2015.00104Abstract
Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER) site (Petersham, MA) have warmed soils 5°C above ambient temperatures for 5, 8, and 20 years. We used this chronosequence to test the hypothesis that soil microbial communities have changed in response to chronic warming. Bacterial community composition was studied using Illumina sequencing of the 16S ribosomal RNA gene, and bacterial and fungal abundance were assessed using quantitative PCR. Only the 20-year warmed site exhibited significant change in bacterial community structure in the organic soil horizon, with no significant changes in the mineral soil. The dominant taxa, abundant at 0.1% or greater, represented 0.3% of the richness but nearly 50% of the observations (sequences). Individual members of the Actinobacteria, Alphaproteobacteria and Acidobacteria showed strong warming responses, with one Actinomycete decreasing from 4.5 to 1% relative abundance with warming. Ribosomal RNA copy number can obfuscate community profiles, but is also correlated with maximum growth rate or trophic strategy among bacteria. Ribosomal RNA copy number correction did not affect community profiles, but rRNA copy number was significantly decreased in warming plots compared to controls. Increased bacterial evenness, shifting beta diversity, decreased fungal abundance and increased abundance of bacteria with low rRNA operon copy number, including Alphaproteobacteria and Acidobacteria, together suggest that more or alternative niche space is being created over the course of long-term warming.
Description
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 104, doi:10.3389/fmicb.2015.00104.
Collections
Suggested Citation
Frontiers in Microbiology 6 (2015): 104The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Long-term CO2 enrichment of a forest ecosystem : implications for forest regeneration and succession
Mohan, Jacqueline E.; Clark, James S.; Schlesinger, William H. (Ecological Society of America, 2007-06)The composition and successional status of a forest affect carbon storage and net ecosystem productivity, yet it remains unclear whether elevated atmospheric carbon dioxide (CO2) will impact rates and trajectories of forest ... -
Vegetation indices do not capture forest cover variation in Upland Siberian Larch Forests
Loranty, Michael M.; Davydov, Sergey P.; Kropp, Heather; Alexander, Heather D.; Mack, Michelle C.; Natali, Susan M.; Zimov, Nikita S. (MDPI AG, Basel, Switzerland, 2018-10-25)Boreal forests are changing in response to climate, with potentially important feedbacks to regional and global climate through altered carbon cycle and albedo dynamics. These feedback processes will be affected by vegetation ... -
Epibenthic community sampling locations from Aleutian Island kelp forest community study, June 2016 and July 2017 (Kelp Forest Ecosystem Engineer Loss)
Edwards, Matthew; Konar, Brenda (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-12-11)This dataset includes epibenthic community sampling locations from Aleutian Island kelp forest community study, June 2016 and July 2017: site name, island name, habitat, location, and depth. For a complete list of ...