Investigating the local atmospheric response to a realistic shift in the Oyashio Sea surface Temperature Front

View/ Open
Date
2015-02-01Author
Smirnov, Dimitry
Concept link
Newman, Matthew
Concept link
Alexander, Michael A.
Concept link
Kwon, Young-Oh
Concept link
Frankignoul, Claude
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/7200As published
https://doi.org/10.1175/JCLI-D-14-00285.1DOI
10.1175/JCLI-D-14-00285.1Keyword
Atmosphere-ocean interaction; Atmospheric circulation; Boundary layer; Cyclogenesis/cyclolysis; Diabatic heating; Extratropical cyclonesAbstract
The local atmospheric response to a realistic shift of the Oyashio Extension SST front in the western North Pacific is analyzed using a high-resolution (HR; 0.25°) version of the global Community Atmosphere Model, version 5 (CAM5). A northward shift in the SST front causes an atmospheric response consisting of a weak surface wind anomaly but a strong vertical circulation extending throughout the troposphere. In the lower troposphere, most of the SST anomaly–induced diabatic heating is balanced by poleward transient eddy heat and moisture fluxes. Collectively, this response differs from the circulation suggested by linear dynamics, where extratropical SST forcing produces shallow anomalous heating balanced by strong equatorward cold air advection driven by an anomalous, stationary surface low to the east. This latter response, however, is obtained by repeating the same experiment except using a relatively low-resolution (LR; 1°) version of CAM5. Comparison to observations suggests that the HR response is closer to nature than the LR response. Strikingly, HR and LR experiments have almost identical vertical profiles of . However, diagnosis of the diabatic quasigeostrophic vertical pressure velocity (ω) budget reveals that HR has a substantially stronger response, which together with upper-level mean differential thermal advection balances stronger vertical motion. The results herein suggest that changes in transient eddy heat and moisture fluxes are critical to the overall local atmospheric response to Oyashio Front anomalies, which may consequently yield a stronger downstream response. These changes may require the high resolution to be fully reproduced, warranting further experiments of this type with other high-resolution atmosphere-only and fully coupled GCMs.
Description
Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 1126–1147, doi:10.1175/JCLI-D-14-00285.1.
Collections
Suggested Citation
Journal of Climate 28 (2015): 1126–1147Related items
Showing items related by title, author, creator and subject.
-
Report on an experiment in five-day weather forecasting
Allen, R. A.; Fletcher, R.; Holmboe, J.; Namias, Jerome; Willett, Hurd C. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1940-04)The following report is presented as a statement of progress made at the Massachusetts Institute of Technology (M.I.T.) in the investigation into the possibility of extending the range of reliable weather forecasts. This ... -
A multivariate estimate of the cold season atmospheric response to North Pacific SST variability
Revelard, Adèle; Frankignoul, Claude; Kwon, Young-Oh (American Meteorological Society, 2018-03-12)The Generalized Equilibrium Feedback Analysis (GEFA) is used to distinguish the influence of the Oyashio Extension (OE) and the Kuroshio Extension (KE) variability on the atmosphere from 1979 to 2014 from that of the main ... -
Extreme variability in Irminger Sea winter heat loss revealed by ocean observatories initiative mooring and the ERA5 reanalysis
Josey, Simon A.; de Jong, Marieke Femke; Oltmanns, Marilena; Moore, Kent; Weller, Robert A. (American Geophysical Union, 2018-12-18)Ground‐breaking measurements from the ocean observatories initiative Irminger Sea surface mooring (60°N, 39°30′W) are presented that provide the first in situ characterization of multiwinter surface heat exchange at a high ...