• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Controller design for underwater vehicle systems with communication constraints

    Thumbnail
    View/Open
    Reed_thesis.pdf (5.773Mb)
    Date
    2015-02
    Author
    Reed, Brooks L.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/7152
    DOI
    10.1575/1912/7152
    Keyword
     Remote submersibles; Underwater acoustic telemetry 
    Abstract
    Real-time cooperation between autonomous vehicles can enable time-critical missions such as tracking and pursuit of a dynamic target or environmental feature, but relies on wireless communications. Underwater communication is almost exclusively accomplished through acoustics, which bring challenges such as delays, low data rates, packet loss, and scheduling constraints. To address these challenges, this thesis presents contributions towards multi-vehicle feedback control in the presence of severe communication constraints. The first major area of work considers the formulation and solution of new multi-vehicle tracking and pursuit problems using closed-loop control. We first describe field experiments in target pursuit at high tracking bandwidths in a challenging shallow-water environment. Next, we present a methodology for pursuit of dynamic ocean features such as fronts, which we validate using ocean model data. The primary innovation is a linearization of ocean model forecast dynamics and uncertainty directly in vehicle coordinates. The second area of work presents a unified formalism for multi-vehicle control and estimation with measurement, control, and acknowledgment packets all subject to scheduling, delays and packet loss. We develop a modular framework that includes a novel technique for estimation using delayed and lossy control acknowledgments. Simulations and field experiments demonstrate the effectiveness of our approach.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2015
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    • WHOI Theses
    Suggested Citation
    Thesis: Reed, Brooks L., "Controller design for underwater vehicle systems with communication constraints", 2015-02, DOI:10.1575/1912/7152, https://hdl.handle.net/1912/7152
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Large-area visually augmented navigation for autonomous underwater vehicles 

      Eustice, Ryan M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2005-06)
      This thesis describes a vision-based, large-area, simultaneous localization and mapping (SLAM) algorithm that respects the low-overlap imagery constraints typical of autonomous underwater vehicles (AUVs) while exploiting ...
    • Thumbnail

      A distributed approach to underwater acoustic communications 

      Bohner, Christopher George (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2003-09)
      A novel distributed underwater acoustic networking (UAN) protocol suitable for ad-hoc deployments of both stationary and mobile nodes dispersed across a relatively wide coverage area is presented. Nodes are dynamically ...
    • Thumbnail

      Quantification of the spatial and temporal evolution of stratified shear instabilities at high Reynolds number using quantitative acoustic scattering techniques 

      Fincke, Jonathan R. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2015-02)
      The spatial and temporal evolution of stratified shear instabilities is quantified in a highly stratified and energetic estuary. The measurements are made using high-resolution acoustic backscatter from an array composed ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo