Upward nitrate transport by phytoplankton in oceanic waters : balancing nutrient budgets in oligotrophic seas

View/ Open
Date
2014-03-13Author
Villareal, Tracy A.
Concept link
Pilskaln, Cynthia H.
Concept link
Montoya, Joseph P.
Concept link
Dennett, Mark R.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/7141As published
https://doi.org/10.7717/peerj.302DOI
10.7717/peerj.302Keyword
Vertical migration; Diatoms; Marine; Nitrogen; Dinoflagellates; Rhizosolenia; Nitrate; Biological pump; Gyres; Mixed layerAbstract
In oceanic subtropical gyres, primary producers are numerically dominated by small (1–5 µm diameter) pro- and eukaryotic cells that primarily utilize recycled nutrients produced by rapid grazing turnover in a highly efficient microbial loop. Continuous losses of nitrogen (N) to depth by sinking, either as single cells, aggregates or fecal pellets, are balanced by both nitrate inputs at the base of the euphotic zone and N2-fixation. This input of new N to balance export losses (the biological pump) is a fundamental aspect of N cycling and central to understanding carbon fluxes in the ocean. In the Pacific Ocean, detailed N budgets at the time-series station HOT require upward transport of nitrate from the nutricline (80–100 m) into the surface layer (∼0–40 m) to balance productivity and export needs. However, concentration gradients are negligible and cannot support the fluxes. Physical processes can inject nitrate into the base of the euphotic zone, but the mechanisms for transporting this nitrate into the surface layer across many 10s of m in highly stratified systems are unknown. In these seas, vertical migration by the very largest (102–103 µm diameter) phytoplankton is common as a survival strategy to obtain N from sub-euphotic zone depths. This vertical migration is driven by buoyancy changes rather than by flagellated movement and can provide upward N transport as nitrate (mM concentrations) in the cells. However, the contribution of vertical migration to nitrate transport has been difficult to quantify over the required basin scales. In this study, we use towed optical systems and isotopic tracers to show that migrating diatom (Rhizosolenia) mats are widespread in the N. Pacific Ocean from 140°W to 175°E and together with other migrating phytoplankton (Ethmodiscus, Halosphaera, Pyrocystis, and solitary Rhizosolenia) can mediate time-averaged transport of N (235 µmol N m-2 d-1) equivalent to eddy nitrate injections (242 µmol NO3− m-2 d-1). This upward biotic transport can close N budgets in the upper 250 m of the central Pacific Ocean and together with diazotrophy creates a surface zone where biological nutrient inputs rather than physical processes dominate the new N flux. In addition to these numerically rare large migrators, there is evidence in the literature of ascending behavior in small phytoplankton that could contribute to upward flux as well. Although passive downward movement has dominated models of phytoplankton flux, there is now sufficient evidence to require a rethinking of this paradigm. Quantifying these fluxes is a challenge for the future and requires a reexamination of individual phytoplankton sinking rates as well as methods for capturing and enumerating ascending phytoplankton in the sea.
Description
© The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PeerJ 2 (2014): e302, doi:10.7717/peerj.302.
Collections
Suggested Citation
PeerJ 2 (2014): e302The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Origin of the deep Bering Sea nitrate deficit : constraints from the nitrogen and oxygen isotopic composition of water column nitrate and benthic nitrate fluxes
Lehmann, Moritz F.; Sigman, Daniel M.; McCorkle, Daniel C.; Brunelle, Brigitte G.; Hoffmann, Sharon S.; Kienast, Markus; Cane, Greg; Clement, Jaclyn (American Geophysical Union, 2005-10-12)On the basis of the normalization to phosphate, a significant amount of nitrate is missing from the deep Bering Sea (BS). Benthic denitrification has been suggested previously to be the dominant cause for the BS nitrate ... -
Nitrate+nitrite and nitrate-only d15N from R/V S.A. Agulhas II cruises VOY016 and VOY019 in the Southern Ocean south of Africa during 2015-2016
Sigman, Daniel M. (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2020-03-13)Nitrate+nitrite and nitrate-only d15N from the Southern Ocean south of Africa. The dataset includes hydrocast (depth-profile) and underway (surface; intake at 7 m depth) data. The former is accompanied by hydrographic data ... -
Sediment oxygen demand and ammonium, nitrate plus nitrate, and phosphate flux data from Little Lagoon, Alabama
Mortazavi, Behzad; Burnett, William C. (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-03-15)Sediment oxygen demand and ammonium, nitrate plus nitrate, and phosphate flux data from Little Lagoon, Alabama from 2010-2013 For a complete list of measurements, refer to the full dataset description in the supplemental ...