Confidence and sensitivity study of the OAFlux multisensor synthesis of the global ocean surface vector wind from 1987 onward
Citable URI
https://hdl.handle.net/1912/7022As published
https://doi.org/10.1002/2014JC010194DOI
10.1002/2014JC010194Keyword
Remote sensing of ocean surface winds; Scatterometer; Passive microwave radiometer; Error analysisAbstract
This study presented an uncertainty assessment of the high-resolution global analysis of daily-mean ocean-surface vector winds (1987 onward) by the Objectively Analyzed air-sea Fluxes (OAFlux) project. The time series was synthesized from multiple satellite sensors using a variational approach to find a best fit to input data in a weighted least-squares cost function. The variational framework requires the a priori specification of the weights, or equivalently, the error covariances of input data, which are seldom known. Two key issues were investigated. The first issue examined the specification of the weights for the OAFlux synthesis. This was achieved by designing a set of weight-varying experiments and applying the criteria requiring that the chosen weights should make the best-fit of the cost function be optimal with regard to both input satellite observations and the independent wind time series measurements at 126 buoy locations. The weights thus determined represent an approximation to the error covariances, which inevitably contain a degree of uncertainty. Hence, the second issue addressed the sensitivity of the OAFlux synthesis to the uncertainty in the weight assignments. Weight perturbation experiments were conducted and ensemble statistics were used to estimate the sensitivity. The study showed that the leading sources of uncertainty for the weight selection are high winds (>15 ms−1) and heavy rain, which are the conditions that cause divergence in wind retrievals from different sensors. Future technical advancement made in wind retrieval algorithms would be key to further improvement of the multisensory synthesis in events of severe storms.
Description
Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 6842–6862, doi:10.1002/2014JC010194.
Collections
Suggested Citation
Journal of Geophysical Research: Oceans 119 (2014): 6842–6862Related items
Showing items related by title, author, creator and subject.
-
Global observations of fine-scale ocean surface topography with the surface water and ocean topography (SWOT) mission
Morrow, Rosemary; Fu, Lee-Lueng; Ardhuin, Fabrice; Benkiran, Mounir; Chapron, Bertrand; Cosme, Emmanuel; d’Ovidio, Francesco; Farrar, J. Thomas; Gille, Sarah T.; Lapeyre, Guillaume; Le Traon, Pierre-Yves; Pascual, Ananda; Ponte, Aurélien (Frontiers Media, 2019-05-15)The future international Surface Water and Ocean Topography (SWOT) Mission, planned for launch in 2021, will make high-resolution 2D observations of sea-surface height using SAR radar interferometric techniques. SWOT will ... -
Variations in ocean surface temperature due to near-surface flow : straining the cool skin layer
Wells, Andrew J.; Cenedese, Claudia; Farrar, J. Thomas; Zappa, Christopher J. (American Meteorological Society, 2009-11)The aqueous thermal boundary layer near to the ocean surface, or skin layer, has thickness O(1 mm) and plays an important role in controlling the exchange of heat between the atmosphere and the ocean. Theoretical arguments ... -
Role of net surface heat flux in seasonal variations of sea surface temperature in the tropical Atlantic Ocean
Yu, Lisan; Jin, Xiangze; Weller, Robert A. (American Meteorological Society, 2006-12-01)The present study used a new net surface heat flux (Qnet) product obtained from the Objective Analyzed Air–Sea Fluxes (OAFlux) project and the International Satellite Cloud Climatology Project (ISCCP) to examine two specific ...