Enriched iron(III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy

View/ Open
Date
2012-12-03Author
Lentini, Christopher J.
Concept link
Wankel, Scott D.
Concept link
Hansel, Colleen M.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/6985As published
https://doi.org/10.3389/fmicb.2012.00404DOI
10.3389/fmicb.2012.00404Abstract
Iron (Fe) oxides exist in a spectrum of structures in the environment, with ferrihydrite widely considered the most bioavailable phase. Yet, ferrihydrite is unstable and rapidly transforms to more crystalline Fe(III) oxides (e.g., goethite, hematite), which are poorly reduced by model dissimilatory Fe(III)-reducing microorganisms. This begs the question, what processes and microbial groups are responsible for reduction of crystalline Fe(III) oxides within sedimentary environments? Further, how do changes in Fe mineralogy shape oxide-hosted microbial populations? To address these questions, we conducted a large-scale cultivation effort using various Fe(III) oxides (ferrihydrite, goethite, hematite) and carbon substrates (glucose, lactate, acetate) along a dilution gradient to enrich for microbial populations capable of reducing Fe oxides spanning a wide range of crystallinities and reduction potentials. While carbon source was the most important variable shaping community composition within Fe(III)-reducing enrichments, both Fe oxide type and sediment dilution also had a substantial influence. For instance, with acetate as the carbon source, only ferrihydrite enrichments displayed a significant amount of Fe(III) reduction and the well-known dissimilatory metal reducer Geobacter sp. was the dominant organism enriched. In contrast, when glucose and lactate were provided, all three Fe oxides were reduced and reduction coincided with the presence of fermentative (e.g., Enterobacter spp.) and sulfate-reducing bacteria (e.g., Desulfovibrio spp.). Thus, changes in Fe oxide structure and resource availability may shift Fe(III)-reducing communities between dominantly metal-respiring to fermenting and/or sulfate-reducing organisms which are capable of reducing more recalcitrant Fe phases. These findings highlight the need for further targeted investigations into the composition and activity of speciation-directed metal-reducing populations within natural environments.
Description
© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 3 (2012): 404, doi:10.3389/fmicb.2012.00404.
Collections
Suggested Citation
Frontiers in Microbiology 3 (2012): 404The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Modeling sulfate reduction in methane hydrate-bearing continental margin sediments : does a sulfate-methane transition require anaerobic oxidation of methane?
Malinverno, Alberto; Pohlman, John W. (American Geophysical Union, 2011-07-12)The sulfate-methane transition (SMT), a biogeochemical zone where sulfate and methane are metabolized, is commonly observed at shallow depths (1–30 mbsf) in methane-bearing marine sediments. Two processes consume sulfate ... -
Response of benthic metabolism and nutrient cycling to reductions in wastewater loading to Boston Harbor, USA
Tucker, Jane; Giblin, Anne E.; Hopkinson, Charles S.; Kelsey, Samuel W.; Howes, Brian L. (Elsevier, 2014-10-02)We describe the long-term response of benthic metabolism in depositional sediments of Boston Harbor, MA, to large reductions in organic matter and nutrient loading. Although Boston Harbor received very high loadings of ... -
Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk
Gehlen, M.; Seferian, Roland; Jones, Daniel O. B.; Roy, T.; Roth, R.; Barry, James P.; Bopp, Laurent; Doney, Scott C.; Dunne, John P.; Heinze, Christoph; Joos, Fortunat; Orr, James C.; Resplandy, L.; Segschneider, J.; Tjiputra, Jerry (Copernicus Publications on behalf of the European Geosciences Union, 2014-12-11)This study aims to evaluate the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCPs). Deep-sea biota is likely highly ...