Interannual variability of wintertime temperature on the inner continental shelf of the Middle Atlantic Bight
Citable URI
https://hdl.handle.net/1912/6972As published
https://doi.org/10.1002/2014JC010153DOI
10.1002/2014JC010153Keyword
Temperature; Coastal; Nearshore; Inner shelf; Heat budget; InterannualAbstract
The shallow depth of the inner continental shelf allows for rapid adjustment of the ocean to air-sea exchange of heat and momentum compared with offshore locations. Observations during 2001–2013 are used to evaluate the contributions of air-sea heat flux and oceanic advection to interannual variability of inner-shelf temperature in the Middle Atlantic Bight. Wintertime processes are important for interpreting regional interannual variability at nearshore locations since winter anomalies account for 69–77% of the variance of the annual anomalies and are correlated over broad along-shelf scales, from New England to North Carolina. At the Martha's Vineyard Coastal Observatory on the 12 m isobath, a heat budget is used to test the hypothesis that interannual differences in winter temperatures are due solely to air-sea heat flux. Bimonthly averages of air-sea heat flux are correlated with temporal changes in temperature, but overestimate the observed wintertime cooling. Velocity and satellite-derived temperature data show that interannual variability in wintertime surface cooling is partially compensated for by alongshore advection of warmer water from the west at this particular location. It is also shown that surface heat flux is a strong function of air-sea temperature difference. Because of this coupling between ocean and air temperatures in shallow water, along-shelf advection can significantly modify the surface heat flux at seasonal and interannual time scales. While along-shelf advection at relatively small (∼100 km) scales can be an important component of the heat budget over the inner shelf, interannual temperature variability is still largely determined by adjustment to large-scale air-temperature anomalies.
Description
Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 6269–6285, doi:10.1002/2014JC010153.
Collections
Suggested Citation
Journal of Geophysical Research: Oceans 119 (2014): 6269–6285Related items
Showing items related by title, author, creator and subject.
-
The summer heat balance of the Oregon inner shelf over two decades: mean and interannual variability
Lemagie, Emily; Kirincich, Anthony R.; Lentz, Steven J. (American Geophysical Union, 2020-01-24)Summer temperature and velocity measurements from 14 years in 15 m of water over the inner shelf off Oregon were used to investigate interannual temperature variability and the capacity of the across‐shelf heat flux to ... -
High-resolution observations of subsurface fronts and alongshore bottom temperature variability over the inner shelf
Connolly, Thomas P.; Kirincich, Anthony R. (American Geophysical Union, 2018-12-28)Circulation patterns over the inner continental shelf can be spatially complex and highly variable in time. However, few studies have examined alongshore variability over short scales of kilometers or less. To observe ... -
Observations of cross-shelf flow driven by cross-shelf winds on the inner continental shelf
Fewings, Melanie R.; Lentz, Steven J.; Fredericks, Janet J. (American Meteorological Society, 2008-11)Six-yr-long time series of winds, waves, and water velocity from a cabled coastal observatory in 12 m of water reveal the separate dependence of the cross-shelf velocity profile on cross-shelf and along-shelf winds, waves, ...