• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    An attenuation study of body waves in the south‐central region of the Gulf of California, México

    Thumbnail
    View/Open
    2027_with-cover.pdf (1.794Mb)
    Date
    2014-07
    Author
    Vidales‐Basurto, Claudia A.  Concept link
    Castro, Raul R.  Concept link
    Huerta, Carlos I.  Concept link
    Sumy, Danielle F.  Concept link
    Gaherty, James B.  Concept link
    Collins, John A.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/6811
    As published
    https://doi.org/10.1785/0120140015
    DOI
    10.1785/0120140015
    Abstract
    We studied the seismic attenuation of body waves in the south‐central region of the Gulf of California (GoC) with records from the Network of Autonomously Recording Seismographs of Baja California (NARS‐Baja), from the Centro de Investigación Científica y de Educación Superior de Ensenada’s Broadband Seismological Network of the GoC (RESBAN), and from the ocean‐bottom seismographs (OBS) deployed as part of the Sea of Cortez Ocean Bottom Array experiment (SCOOBA). We examine 27 well‐located earthquakes reported in Sumy et al. (2013) that occurred from October 2005 to October 2006 with magnitudes (Mw) between 3.5 and 4.8. We estimated S‐wave site effects by calculating horizontal‐to‐vertical spectral ratios and determined attenuation functions with a nonparametric model by inverting the observed spectral amplitudes of 21 frequencies between 0.13 and 12.59 Hz for the SCOOBA (OBS) stations and 19 frequencies between 0.16 and 7.94 Hz for NARS‐Baja and RESBAN stations. We calculated the geometrical spreading and the attenuation (1/Q) factors for two distance intervals (10–120 and 120–220 km, respectively) for each frequency considered. The estimates of Q obtained with the SCOOBA (OBS) records for the interval 10–120 km indicate that the P waves attenuate more than S waves (QP=34±1.2f 0.82±0.10, QS=59±1.1f 0.90±0.03) for frequencies between 0.6 and 12.6 Hz; whereas for the 120–220 km interval, where ray paths travel deeper, S waves attenuate more than P waves (QP=117±1.3f 0.44±0.19, QS=51±1.2f 1.12±0.11). The estimates of Q obtained using NARS‐Baja and RESBAN records, within 10–120 km, indicate that P waves attenuate more than S waves (QP=69±1.2f 0.87±0.16, QS=176±1.4f 0.61±0.26) at frequencies between 0.3 and 6.3 Hz; whereas at the 120–220 km distance interval S waves attenuate slightly more than P waves (QP=39±1.1f 0.64±0.06, QS=48±1.1f 0.37±0.07) at high frequencies (f>3  Hz). These results, based on a unique OBS dataset, provide an indirect mean to constrain future models of the thermal structure beneath the GoC.
    Description
    Author Posting. © Seismological Society of America, 2014. This article is posted here by permission of Seismological Society of America for personal use, not for redistribution. The definitive version was published in Bulletin of the Seismological Society of America 104 (2014): 2027-2042, doi:10.1785/0120140015.
    Collections
    • Geology and Geophysics (G&G)
    Suggested Citation
    Bulletin of the Seismological Society of America 104 (2014): 2027-2042
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo