• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Buoyancy-driven circulation in the Red Sea

    Thumbnail
    View/Open
    Zhai_thesis.pdf (6.729Mb)
    Date
    2014-09
    Author
    Zhai, Ping  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/6752
    DOI
    10.1575/1912/6752
    Keyword
     Ocean circulation; Ocean currents; Aegaeo (Ship) Cruise 
    Abstract
    This thesis explores the buoyancy-driven circulation in the Red Sea, using a combination of observations, as well as numerical modeling and analytical method. The first part of the thesis investigates the formation mechanism and spreading of Red Sea Overflow Water (RSOW) in the Red Sea. The preconditions required for open-ocean convection, which is suggested to be the formation mechanism of RSOW, are examined. The RSOW is identified and tracked as a layer with minimum potential vorticity and maximum chlorofluorocarbon-12. The pathway of the RSOW is also explored using numerical simulation. If diffusivity is not considered, the production rate of the RSOW is estimated to be 0.63 Sv using Walin’s method. By comparing this 0.63 Sv to the actual RSOW transport at the Strait of Bab el Mandeb, it is implied that the vertical diffusivity is about 3.4 x 10-5m2 s-1 . The second part of the thesis studies buoyancy-forced circulation in an idealized Red Sea. Buoyancy-loss driven circulation in marginal seas is usually dominated by cyclonic boundary currents on f-plane, as suggested by previous observations and numerical modeling. This thesis suggests that by including β-effect and buoyancy loss that increases linearly with latitude, the resultant mean Red Sea circulation consists of an anticyclonic gyre in the south and a cyclonic gyre in the north. In mid-basin, the northward surface flow crosses from the western boundary to the eastern boundary. The observational support is also reviewed. The mechanism that controls the crossover of boundary currents is further explored using an ad hoc analytical model based on PV dynamics. This ad hoc analytical model successfully predicts the crossover latitude of boundary currents. It suggests that the competition between advection of planetary vorticity and buoyancy-loss related term determines the crossover latitude. The third part of the thesis investigates three mechanisms that might account for eddy generation in the Red Sea, by conducting a series of numerical experiments. The three mechanisms are: i) baroclinic instability; ii) meridional structure of surface buoyancy losses; iii) cross-basin wind fields.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2014
    Collections
    • WHOI Theses
    • Physical Oceanography (PO)
    Suggested Citation
    Thesis: Zhai, Ping, "Buoyancy-driven circulation in the Red Sea", 2014-09, DOI:10.1575/1912/6752, https://hdl.handle.net/1912/6752
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Oceanic fluxes of mass, heat, and freshwater : a global estimate and perspective 

      Macdonald, Alison M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1995-08)
      Data from fifteen globally distributed, modern, high resolution, hydrographic oceanic transects are combined in an inverse calculation using large scale box models. The models provide estimates of the global meridional ...
    • Thumbnail

      Adaptive error estimation in linearized ocean general circulation models 

      Chechelnitsky, Michael Y. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1999-06)
      Data assimilation methods, such as the Kalman filter, are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. In this study we address the problem of estimating ...
    • Thumbnail

      On the world ocean circulation. Volume I, some global features/North Atlantic circulation 

      Schmitz, William J. (Woods Hole Oceanographic Institution, 1996-06)
      This is the first volume of a "final report" that summarizes, often in a speculative vein, what I have learned over the past 35 years or so about large-scale, low-frequency ocean currents, primarily with support from the ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo