• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Coastal trapped waves, alongshore pressure gradients, and the California Undercurrent

    Thumbnail
    View/Open
    jpo-d-13-095%2E1.pdf (4.083Mb)
    Date
    2014-01
    Author
    Connolly, Thomas P.  Concept link
    Hickey, Barbara M.  Concept link
    Shulman, Igor  Concept link
    Thomson, Richard E.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/6702
    As published
    https://doi.org/10.1175/JPO-D-13-095.1
    DOI
    10.1175/JPO-D-13-095.1
    Keyword
     Geographic location/entity; Continental shelf/slope; Circulation/ Dynamics; Baroclinic flows; Coastal flows; Models and modeling; Model evaluation/performance; Variability; Intraseasonal variability; Seasonal variability 
    Abstract
    The California Undercurrent (CUC), a poleward-flowing feature over the continental slope, is a key transport pathway along the west coast of North America and an important component of regional upwelling dynamics. This study examines the poleward undercurrent and alongshore pressure gradients in the northern California Current System (CCS), where local wind stress forcing is relatively weak. The dynamics of the undercurrent are compared in the primitive equation Navy Coastal Ocean Model and a linear coastal trapped wave model. Both models are validated using hydrographic data and current-meter observations in the core of the undercurrent in the northern CCS. In the linear model, variability in the predominantly equatorward wind stress along the U.S. West Coast produces episodic reversals to poleward flow over the northern CCS slope during summer. However, reproducing the persistence of the undercurrent during late summer requires additional incoming energy from sea level variability applied south of the region of the strongest wind forcing. The relative importance of the barotropic and baroclinic components of the modeled alongshore pressure gradient changes with latitude. In contrast to the southern and central portions of the CCS, the baroclinic component of the alongshore pressure gradient provides the primary poleward force at CUC depths over the northern CCS slope. At time scales from weeks to months, the alongshore pressure gradient force is primarily balanced by the Coriolis force associated with onshore flow.
    Description
    Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 319–342, doi:10.1175/JPO-D-13-095.1.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Journal of Physical Oceanography 44 (2014): 319–342
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean : a modeling study 

      Arruda, R.; Calil, Paulo H. R.; Bianchi, A. A.; Doney, Scott C.; Gruber, Nicolas; Lima, Ivan D.; Turi, G. (Copernicus Publications on behalf of the European Geosciences Union, 2015-10-12)
      We use an eddy-resolving, regional ocean biogeochemical model to investigate the main variables and processes responsible for the climatological spatio-temporal variability of pCO2 and the air-sea CO2 fluxes in the ...
    • Thumbnail

      Trend and interannual variability in southeast Greenland Sea Ice : impacts on coastal Greenland climate variability 

      Moore, G. W. K.; Straneo, Fiamma; Oltmanns, Marilena (John Wiley & Sons, 2014-12-02)
      We describe the recent occurrence of a region of diminished sea ice cover or “notch” offshore of the Kangerdlugssuaq Fiord, the site of the largest tidewater glacier along Greenland's southeast coast. The notch's location ...
    • Thumbnail

      U.S. IOOS coastal and ocean modeling testbed : inter-model evaluation of tides, waves, and hurricane surge in the Gulf of Mexico 

      Kerr, Patrick C.; Donahue, Aaron S.; Westerink, Joannes J.; Luettich, Richard A.; Zheng, L. Y.; Weisberg, Robert H.; Huang, Y.; Wang, H. V.; Teng, Y.; Forrest, D. R.; Roland, Aron; Haase, A. T.; Kramer, A. W.; Taylor, A. A.; Rhome, J. R.; Feyen, J. C.; Signell, Richard P.; Hanson, J. L.; Hope, M. E.; Estes, R. M.; Dominguez, R. A.; Dunbar, R. P.; Semeraro, L. N.; Westerink, H. J.; Kennedy, A. B.; Smith, J. M.; Powell, M. D.; Cardone, V. J.; Cox, A. T. (John Wiley & Sons, 2013-10-08)
      A Gulf of Mexico performance evaluation and comparison of coastal circulation and wave models was executed through harmonic analyses of tidal simulations, hindcasts of Hurricane Ike (2008) and Rita (2005), and a benchmarking ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy