Shifts in the microbial community composition of Gulf Coast beaches following beach oiling

View/ Open
Date
2013-09-10Author
Newton, Ryan J.
Concept link
Huse, Susan M.
Concept link
Morrison, Hilary G.
Concept link
Peake, Colin S.
Concept link
Sogin, Mitchell L.
Concept link
McLellan, Sandra L.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/6545As published
https://doi.org/10.1371/journal.pone.0074265DOI
10.1371/journal.pone.0074265Abstract
Microorganisms associated with coastal sands serve as a natural biofilter, providing essential nutrient recycling in nearshore environments and acting to maintain coastal ecosystem health. Anthropogenic stressors often impact these ecosystems, but little is known about whether these disturbances can be identified through microbial community change. The blowout of the Macondo Prospect reservoir on April 20, 2010, which released oil hydrocarbons into the Gulf of Mexico, presented an opportunity to examine whether microbial community composition might provide a sensitive measure of ecosystem disturbance. Samples were collected on four occasions, beginning in mid-June, during initial beach oiling, until mid-November from surface sand and surf zone waters at seven beaches stretching from Bay St. Louis, MS to St. George Island, FL USA. Oil hydrocarbon measurements and NOAA shoreline assessments indicated little to no impact on the two most eastern beaches (controls). Sequence comparisons of bacterial ribosomal RNA gene hypervariable regions isolated from beach sands located to the east and west of Mobile Bay in Alabama demonstrated that regional drivers account for markedly different bacterial communities. Individual beaches had unique community signatures that persisted over time and exhibited spatial relationships, where community similarity decreased as horizontal distance between samples increased from one to hundreds of meters. In contrast, sequence analyses detected larger temporal and less spatial variation among the water samples. Superimposed upon these beach community distance and time relationships, was increased variability in bacterial community composition from oil hydrocarbon contaminated sands. The increased variability was observed among the core, resident, and transient community members, indicating the occurrence of community-wide impacts rather than solely an overprinting of oil hydrocarbon-degrading bacteria onto otherwise relatively stable sand population structures. Among sequences classified to genus, Alcanivorax, Alteromonas, Marinobacter, Winogradskyella, and Zeaxanthinibacter exhibited the largest relative abundance increases in oiled sands.
Description
© The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 8 (2013): e74265, doi:10.1371/journal.pone.0074265.
Suggested Citation
PLoS One 8 (2013): e74265The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Beach changes and management options for Nauset Barrier Beach and Orleans Town Beach, Cape Cod, MA : report to the Town of Orleans
Aubrey, David G.; Robertson, William (Woods Hole Oceanographic Institution, 1998-04)The present study investigated the shoreline and dune changes occurrng along Nauset Barrier Beach system during the past sixty years, based on examination of aerial photographs, charts, and other data sources. Significant ... -
Recent evolution of an active barrier beach complex : Popponesset Beach, Cape Cod, Massachusetts
Aubrey, David G.; Gaines, Arthur G. (Woods Hole Oceanographic Institution, 1982-01)Popponesset Spit, the barrier beach sheltering Popponesset Bay on Cape Cod, Massachusetts, has experienced large changes in its location and shape over the past thirty years. Concern by the public over loss of this ... -
Collecting on the beach
Huettner, Alfred F. (Alfred Francis), b. 1884 (Marine Biological Laboratory Archives, 5/15/2012)