Show simple item record

dc.contributor.authorWang, Zhaohui Aleck  Concept link
dc.contributor.authorWanninkhof, Rik  Concept link
dc.contributor.authorCai, Wei-Jun  Concept link
dc.contributor.authorByrne, Robert H.  Concept link
dc.contributor.authorHu, Xinping  Concept link
dc.contributor.authorPeng, Tsung-Hung  Concept link
dc.contributor.authorHuang, Wei-Jen  Concept link
dc.date.accessioned2014-04-09T18:46:48Z
dc.date.available2014-04-09T18:46:48Z
dc.date.issued2013-01
dc.identifier.citationLimnology and Oceanography 58 (2013): 325-342en_US
dc.identifier.urihttps://hdl.handle.net/1912/6544
dc.descriptionAuthor Posting. © Association for the Sciences of Limnology and Oceanography, 2013. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 58 (2013): 325-342, doi:10.4319/lo.2013.58.1.0325.en_US
dc.description.abstractDistributions of total alkalinity (TA), dissolved inorganic carbon (DIC), and other parameters relevant to the marine inorganic carbon system were investigated in shelf and adjacent ocean waters during a U.S. Gulf of Mexico and East Coast Carbon cruise in July–August 2007. TA exhibited near-conservative behavior with respect to salinity. Shelf concentrations were generally high in southern waters (Gulf of Mexico and East Florida) and decreased northward from Georgia to the Gulf of Maine. DIC was less variable geographically and exhibited strongly nonconservative behavior. As a result, the ratio of TA to DIC generally decreased northward. The spatial patterns of other CO2 system parameters closely followed those of the TA : DIC ratio. All sampled shelf waters were supersaturated with respect to aragonite (saturation state ΩA > 1). The most intensely buffered and supersaturated waters (ΩA > 5.0) were in northern Gulf of Mexico river-plume waters; the least intensely buffered and least supersaturated waters (ΩA < 1.3) were in the deep Gulf of Maine. Due to their relatively low pH, ΩA, and buffer intensity, waters of the northeastern U.S. shelves may be more susceptible to acidification pressures than are their southern counterparts. In the Mid-Atlantic Bight, alongshore mixing tended to increase DIC concentrations southward, but this effect was largely offset by the opposing effects of biogeochemical processing. In the Gulf of Mexico, downstream increases in Loop Current DIC suggested significant contributions from shelf and gulf waters, estimated at 9.1 × 109 mol C d−1. Off the southeastern U.S., along-flow chemical changes in the Florida Current were dominated by mixing associated with North Atlantic subtropical recirculation.en_US
dc.description.sponsorshipThe study was supported by the NOAA Global Carbon Cycle Program, proposal GC05-208.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.publisherAssociation for the Sciences of Limnology and Oceanographyen_US
dc.relation.urihttps://doi.org/10.4319/lo.2013.58.1.0325
dc.titleThe marine inorganic carbon system along the Gulf of Mexico and Atlantic coasts of the United States : insights from a transregional coastal carbon studyen_US
dc.typeArticleen_US
dc.identifier.doi10.4319/lo.2013.58.1.0325


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record