The marine inorganic carbon system along the Gulf of Mexico and Atlantic coasts of the United States : insights from a transregional coastal carbon study

View/ Open
Date
2013-01Author
Wang, Zhaohui Aleck
Concept link
Wanninkhof, Rik
Concept link
Cai, Wei-Jun
Concept link
Byrne, Robert H.
Concept link
Hu, Xinping
Concept link
Peng, Tsung-Hung
Concept link
Huang, Wei-Jen
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/6544As published
https://doi.org/10.4319/lo.2013.58.1.0325DOI
10.4319/lo.2013.58.1.0325Abstract
Distributions of total alkalinity (TA), dissolved inorganic carbon (DIC), and other parameters relevant to the marine inorganic carbon system were investigated in shelf and adjacent ocean waters during a U.S. Gulf of Mexico and East Coast Carbon cruise in July–August 2007. TA exhibited near-conservative behavior with respect to salinity. Shelf concentrations were generally high in southern waters (Gulf of Mexico and East Florida) and decreased northward from Georgia to the Gulf of Maine. DIC was less variable geographically and exhibited strongly nonconservative behavior. As a result, the ratio of TA to DIC generally decreased northward. The spatial patterns of other CO2 system parameters closely followed those of the TA : DIC ratio. All sampled shelf waters were supersaturated with respect to aragonite (saturation state ΩA > 1). The most intensely buffered and supersaturated waters (ΩA > 5.0) were in northern Gulf of Mexico river-plume waters; the least intensely buffered and least supersaturated waters (ΩA < 1.3) were in the deep Gulf of Maine. Due to their relatively low pH, ΩA, and buffer intensity, waters of the northeastern U.S. shelves may be more susceptible to acidification pressures than are their southern counterparts. In the Mid-Atlantic Bight, alongshore mixing tended to increase DIC concentrations southward, but this effect was largely offset by the opposing effects of biogeochemical processing. In the Gulf of Mexico, downstream increases in Loop Current DIC suggested significant contributions from shelf and gulf waters, estimated at 9.1 × 109 mol C d−1. Off the southeastern U.S., along-flow chemical changes in the Florida Current were dominated by mixing associated with North Atlantic subtropical recirculation.
Description
Author Posting. © Association for the Sciences of Limnology and Oceanography, 2013. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 58 (2013): 325-342, doi:10.4319/lo.2013.58.1.0325.
Collections
Suggested Citation
Limnology and Oceanography 58 (2013): 325-342Related items
Showing items related by title, author, creator and subject.
-
Lake Michigan water chemistry data, including dissolved and particulate phosphorus, chlorophyll a, carbon dioxide, total dissolved inorganic carbon, and dissolved organic carbon.
Bootsma, Harvey; Liao, Qian (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-03-15)Lake Michigan water chemistry data, including dissolved and particulate phosphorus, chlorophyll a, carbon dioxide, total dissolved inorganic carbon, and dissolved organic carbon. For a complete list of measurements, refer ... -
Role of carbon cycle observations and knowledge in carbon management
Dilling, Lisa; Doney, Scott C.; Edmonds, Jae; Gurney, Kevin R.; Harriss, Robert; Schimel, David S.; Stephens, Britton B.; Stokes, Gerald (Annual Reviews, 2003-08-14)Agriculture and industrial development have led to inadvertent changes in the natural carbon cycle. As a consequence, concentrations of carbon dioxide and other greenhouse gases have increased in the atmosphere and may ... -
Influence of biological carbon export on ocean carbon uptake over the annual cycle across the North Pacific Ocean
Palevsky, Hilary I.; Quay, Paul D. (John Wiley & Sons, 2017-01-21)We evaluate the influences of biological carbon export, physical circulation, and temperature-driven solubility changes on air-sea CO2 flux across the North Pacific basin (35°N–50°N, 142°E–125°W) throughout the full annual ...