Diffusive vertical heat flux in the Canada Basin of the Arctic Ocean inferred from moored instruments

View/ Open
Date
2014-01-22Author
Lique, Camille
Concept link
Guthrie, John D.
Concept link
Steele, Michael
Concept link
Proshutinsky, Andrey
Concept link
Morison, James H.
Concept link
Krishfield, Richard A.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/6539As published
https://doi.org/10.1002/2013JC009346DOI
10.1002/2013JC009346Keyword
Arctic Ocean; Atlantic water; MixingAbstract
Observational studies have shown that an unprecedented warm anomaly has recently affected the temperature of the Atlantic Water (AW) layer lying at intermediate depth in the Arctic Ocean. Using observations from four profiling moorings, deployed in the interior of the Canada Basin between 2003 and 2011, the upward diffusive vertical heat flux from this layer is quantified. Vertical diffusivity is first estimated from a fine-scale parameterization method based on CTD and velocity profiles. Resulting diffusive vertical heat fluxes from the AW are in the range 0.1–0.2 W m−2 on average. Although large over the period considered, the variations of the AW temperature maximum yields small variations for the temperature gradient and thus the vertical diffusive heat flux. In most areas, variations in upward diffusive vertical heat flux from the AW have only a limited effect on temperature variations of the overlying layer. However, the presence of eddies might be an effective mechanism to enhance vertical heat transfer, although the small number of eddies sampled by the moorings suggest that this mechanism remains limited and intermittent in space and time. Finally, our results suggest that computing diffusive vertical heat flux with a constant vertical diffusivity of ∼2 × 10−6 m2 s−1 provides a reasonable estimate of the upward diffusive heat transfer from the AW layer, although this approximation breaks down in the presence of eddies.
Description
Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 496-508, doi:10.1002/2013JC009346.
Collections
Suggested Citation
Journal of Geophysical Research: Oceans 119 (2014): 496-508Related items
Showing items related by title, author, creator and subject.
-
Recent advances in Arctic ocean studies employing models from the Arctic Ocean Model Intercomparison Project
Proshutinsky, Andrey; Aksenov, Yevgeny; Kinney, Jaclyn Clement; Gerdes, Rudiger; Golubeva, Elena; Holland, David; Holloway, Greg; Jahn, Alexandra; Johnson, Mark; Popova, Ekaterina E.; Steele, Michael; Watanabe, Eiji (Oceanography Society, 2011-09)Observational data show that the Arctic Ocean has significantly and rapidly changed over the last few decades, which is unprecedented in the observational record. Air and water temperatures have increased, sea ice volume ... -
A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean
Tank, Suzanne E.; Raymond, Peter A.; Striegl, Robert G.; McClelland, James W.; Holmes, Robert M.; Fiske, Gregory J.; Peterson, Bruce J. (American Geophysical Union, 2012-12-14)A series of seasonally distributed measurements from the six largest Arctic rivers (the Ob', Yenisey, Lena, Kolyma, Yukon and Mackenzie) was used to examine the magnitude and significance of Arctic riverine DIC flux to ... -
The Arctic and subarctic Ocean flux of potential vorticity and the Arctic Ocean circulation
Yang, Jiayan (American Meteorological Society, 2005-12)According to observations, the Arctic Ocean circulation beneath a shallow thermocline can be schematized by cyclonic rim currents along shelves and over ridges. In each deep basin, the circulation is also believed to be ...