• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Dynamical response of the Arctic atmospheric boundary layer process to uncertainties in sea-ice concentration

    Thumbnail
    View/Open
    jgrd50967.pdf (8.097Mb)
    Date
    2013-11-20
    Author
    Seo, Hyodae  Concept link
    Yang, Jiayan  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/6502
    As published
    https://doi.org/10.1002/2013JD020312
    DOI
    10.1002/2013JD020312
    Keyword
     Sea-ice concentration; Boundary layer process; Arctic sea ice; Atmospheric modeling 
    Abstract
    Impact of sea-ice concentration (SIC) on the Arctic atmospheric boundary layer (ABL) is investigated using a polar-optimized version of the Weather Research and Forecasting (Polar WRF) model forced with SIC conditions during three different years. We present a detailed comparison of the simulations with historical ship and ice station based data focusing on September. Our analysis shows that Polar WRF provides a reasonable representation of the observed ABL evolution provided that SIC uncertainties are small. Lower skill is obtained, however, with elevated SIC uncertainties associated with incorrect seasonal evolution of sea ice and misrepresentation of ice thickness near the marginal ice zone (MIZ). The result underscores the importance of accurate representation of ice conditions for skillful simulation of the Arctic ABL. Further, two dynamically distinctive effects of sea ice on the surface wind were found, which act on different spatial scales. Reduced SIC lowers ABL stability, thereby increasing surface-wind (W10) speeds. The spatial scale of this response is comparable to the basin scale of the SIC difference. In contrast, near-surface geostrophic wind (Wg) shows a strong response in the MIZ, where a good spatial correspondence exists among the Laplacian of the sea level pressure (SLP), the surface-wind convergence, and the vertical motion within the ABL. This indicates that SIC affects Wg through variation in SLP but on a much narrower scale. Larger-amplitude and broader-scale response in W10 implies that surface-wind stress derived from Wg to drive ice-ocean models may not fully reflect the effect of SIC changes.
    Description
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Atmospheres 118 (2013): 12,383–12,402, doi:10.1002/2013JD020312.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Journal of Geophysical Research: Atmospheres 118 (2013): 12,383–12,402
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Estuarine boundary layer mixing processes : insights from dye experiments 

      Chant, Robert J.; Geyer, W. Rockwell; Houghton, Robert; Hunter, Elias J.; Lerczak, James A. (American Meteorological Society, 2007-07)
      A series of dye releases in the Hudson River estuary elucidated diapycnal mixing rates and temporal variability over tidal and fortnightly time scales. Dye was injected in the bottom boundary layer for each of four releases ...
    • Thumbnail

      Investigations of scalar transfer coefficients in fog during the Coupled Boundary Layers and Air Sea Transfer Experiment : a case study 

      Crofoot, Robert Farrington (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2004-09)
      The uncertainty in the determination of the momentum and scalar fluxes remains one of the main obstacles to accurate numerical forecasts in low to moderate wind conditions. For example, latent heat fluxes computed from ...
    • Thumbnail

      Internal waves in the Arctic : influence of ice concentration, ice roughness, and surface layer stratification 

      Cole, Sylvia T.; Toole, John M.; Rainville, Luc; Lee, Craig M. (John Wiley & Sons, 2018-08-14)
      The Arctic ice cover influences the generation, propagation, and dissipation of internal waves, which in turn may affect vertical mixing in the ocean interior. The Arctic internal wavefield and its relationship to the ice ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo