Constraints on superoxide mediated formation of manganese oxides

View/ Open
Date
2013-09-03Author
Learman, Deric R.
Concept link
Voelker, Bettina M.
Concept link
Madden, Andrew S.
Concept link
Hansel, Colleen M.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/6491As published
https://doi.org/10.3389/fmicb.2013.00262DOI
10.3389/fmicb.2013.00262Keyword
Manganese oxidation; Manganese oxides; Superoxide; Reactive oxygen species; Mn(III) complexes; Organic ligandsAbstract
Manganese (Mn) oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide (O−2) both of biogenic and abiogenic origin as an effective oxidant of Mn(II) leading to the formation of Mn oxides. Here we examined the conditions under which abiotically produced superoxide led to oxidative precipitation of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III) and Mn(III/IV) oxides, was only observed in the presence of active catalase, indicating that hydrogen peroxide (H2O2), a product of the reaction of O−2 with Mn(II), inhibits the oxidation process presumably through the reduction of Mn(III). Citrate and pyrophosphate increased the yield of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III)-ligand complexes. While complexing ligands played a role in stabilizing Mn(III), they did not eliminate the inhibition of net Mn(III) formation by H2O2. The Mn oxides precipitated were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically generated superoxide. Yet, in contrast to the large particulate Mn oxides formed by biogenic superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases. This suggests that the deposition of crystalline Mn oxides within the environment requires a biological, or at least organic, influence. This work provides the first direct evidence that, under conditions relevant to natural waters, oxidation of Mn(II) by superoxide can occur and lead to formation of Mn oxides. For organisms that oxidize Mn(II) by producing superoxide, these findings may also point to other microbially mediated processes, in particular enzymatic hydrogen peroxide degradation and/or production of organic ligand metabolites, that allow for Mn oxide formation.
Description
© The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 4 (2013): 262, doi:10.3389/fmicb.2013.00262.
Collections
Suggested Citation
Frontiers in Microbiology 4 (2013): 262The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
A manganese-rich environment supports superoxide dismutase activity in a lyme disease pathogen, Borrelia burgdorferi
Aguirre, J. Dafhne; Clark, Hillary M.; McIlvin, Matthew R.; Vazquez, Christine; Palmere, Shaina L.; Grab, Dennis J.; Seshu, J.; Hart, P. John; Saito, Mak A.; Culotta, Valeria C. (2013-01-28)The Lyme disease pathogen Borrelia burgdorferi represents a novel organism in which to study metalloprotein biology in that this spirochete has uniquely evolved with no requirement for iron. Not only is iron low, but we ... -
Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event
Diaz, Julia M.; Hansel, Colleen M.; Apprill, Amy; Brighi, Caterina; Zhang, Tong; Weber, Laura; McNally, Sean; Xun, Liping (Nature Publishing Group, 2016-12-07)The reactive oxygen species superoxide (O2·−) is both beneficial and detrimental to life. Within corals, superoxide may contribute to pathogen resistance but also bleaching, the loss of essential algal symbionts. Yet, the ... -
The presence of four iron-containing superoxide dismutase isozymes in Trypanosomatidae : characterization, subcellular localization, and phylogenetic origin in Trypanosoma brucei
Dufernez, Fabienne; Yernaux, Cedric; Gerbod, Delphine; Noel, Christophe; Chauvenet, Melanie; Wintjens, Rene; Edgcomb, Virginia P.; Capron, Monique; Opperdoes, Fred R.; Viscogliosi, Eric (2005-08-11)Metalloenzymes such as the superoxide dismutases (SODs) form part of a defense mechanism that helps protect obligate and facultative aerobic organisms from oxygen toxicity and damage. Here, we report the presence in the ...