The iron budget in ocean surface waters in the 20th and 21st centuries : projections by the Community Earth System Model version 1

View/ Open
Date
2014-01-04Author
Misumi, Kazuhiro
Concept link
Lindsay, Keith
Concept link
Moore, J. Keith
Concept link
Doney, Scott C.
Concept link
Bryan, Frank O.
Concept link
Tsumune, Daisuke
Concept link
Yoshida, Yoshikatsu
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/6468As published
https://doi.org/10.5194/bg-11-33-2014DOI
10.5194/bg-11-33-2014Abstract
We investigated the simulated iron budget in ocean surface waters in the 1990s and 2090s using the Community Earth System Model version 1 and the Representative Concentration Pathway 8.5 future CO2 emission scenario. We assumed that exogenous iron inputs did not change during the whole simulation period; thus, iron budget changes were attributed solely to changes in ocean circulation and mixing in response to projected global warming, and the resulting impacts on marine biogeochemistry. The model simulated the major features of ocean circulation and dissolved iron distribution for the present climate. Detailed iron budget analysis revealed that roughly 70% of the iron supplied to surface waters in high-nutrient, low-chlorophyll (HNLC) regions is contributed by ocean circulation and mixing processes, but the dominant supply mechanism differed by region: upwelling in the eastern equatorial Pacific and vertical mixing in the Southern Ocean. For the 2090s, our model projected an increased iron supply to HNLC waters, even though enhanced stratification was predicted to reduce iron entrainment from deeper waters. This unexpected result is attributed largely to changes in gyre-scale circulations that intensified the advective supply of iron to HNLC waters. The simulated primary and export production in the 2090s decreased globally by 6 and 13%, respectively, whereas in the HNLC regions, they increased by 11 and 6%, respectively. Roughly half of the elevated production could be attributed to the intensified iron supply. The projected ocean circulation and mixing changes are consistent with recent observations of responses to the warming climate and with other Coupled Model Intercomparison Project model projections. We conclude that future ocean circulation has the potential to increase iron supply to HNLC waters and will potentially buffer future reductions in ocean productivity.
Description
© The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 11 (2014): 33-55, doi:10.5194/bg-11-33-2014.
Collections
Suggested Citation
Biogeosciences 11 (2014): 33-55The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry
Krishnamurthy, Aparna; Moore, J. Keith; Mahowald, Natalie M.; Luo, Chao; Doney, Scott C.; Lindsay, Keith; Zender, Charles S. (American Geophysical Union, 2009-08-28)We present results from transient sensitivity studies with the Biogeochemical Elemental Cycling (BEC) ocean model to increasing anthropogenic atmospheric inorganic nitrogen (N) and soluble iron (Fe) deposition over the ... -
Projected 21st century decrease in marine productivity : a multi-model analysis
Steinacher, M.; Joos, Fortunat; Frolicher, T. L.; Bopp, Laurent; Cadule, P.; Cocco, V.; Doney, Scott C.; Gehlen, M.; Lindsay, Keith; Moore, J. Keith; Schneider, B.; Segschneider, J. (Copernicus Publications on behalf of the European Geosciences Union, 2010-03-11)Changes in marine net primary productivity (PP) and export of particulate organic carbon (EP) are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ... -
Marine ecosystem dynamics and biogeochemical cycling in the Community Earth System Model [CESM1(BGC)] : comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 scenarios
Moore, J. Keith; Lindsay, Keith; Doney, Scott C.; Long, Matthew C.; Misumi, Kazuhiro (American Meteorological Society, 2013-12-01)The authors compare Community Earth System Model results to marine observations for the 1990s and examine climate change impacts on biogeochemistry at the end of the twenty-first century under two future scenarios ...