Mean and turbulent velocity fields near rigid and flexible plants and the implications for deposition
Citable URI
https://hdl.handle.net/1912/6459As published
https://doi.org/10.1002/2013JF002858DOI
10.1002/2013JF002858Keyword
Sedimentation; Vegetation; Ecogeomorphology; Velocity; TurbulenceAbstract
The transport of fine sediment and organic matter plays an important role in the nutrient dynamics of shallow aquatic systems, and the fate of these particles is closely linked to vegetation. We describe the mean and turbulent flow near circular patches of synthetic vegetation and examine how the spatial distribution of flow is connected to the spatial distribution of suspended sediment deposition. Patches of rigid, emergent, and flexible, submerged vegetation were considered, with two different stem densities. For the rigid emergent vegetation, flow adjustment was primarily two-dimensional, with flow deflected in the horizontal plane. Horizontal shear layers produced a von Kármán vortex street. Flow through the patch shifted the vortex street downstream, resulting in a region directly downstream of the patch in which both the mean and turbulent velocities were diminished. Net deposition was enhanced within this region. In contrast, for the flexible, submerged vegetation, flow adjustment was three-dimensional, with shear layers formed in the vertical and horizontal planes. Because of strong vertical circulation, turbulent kinetic energy was elevated directly downstream of the patch. Consistent with this, deposition was not enhanced at any point in the wake. This comparison suggests that morphological feedbacks differ between submerged and emergent vegetation. Further, enhanced deposition occurred only in regions where both turbulent and mean velocities were reduced, relative to the open channel. Reduced deposition (indicating enhanced resuspension) occurred in regions of high turbulence kinetic energy, regardless of local mean velocity. These observations highlight the importance of turbulence in controlling deposition.
Description
Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 118 (2013): 2585–2599, doi:10.1002/2013JF002858.
Collections
Suggested Citation
Journal of Geophysical Research: Earth Surface 118 (2013): 2585–2599Related items
Showing items related by title, author, creator and subject.
-
A study of the velocity structure in a marine boundary layer : instrumentation and observations
Tochko, John Steven (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1978-02)The design and operation of a unique flow measuring instrument for bottom boundary layer studies in the marine environment is documented. The effectiveness of the instrument in acquiring data with which models of near ... -
Entrainment and mixed layer dynamics of a surface-stress-driven stratiified fluid
Manucharyan, Georgy E.; Caulfield, C. P. (2014-12)We consider experimentally an initially quiescent and linearly stratified fluid with buoyancy frequency NQ in a cylinder subject to surface-stress forcing from a disc of radius R spinning at a constant angular velocity Ω. ... -
Seasonality and buoyancy suppression of turbulence in the Bay of Bengal
Thakur, Ritabrata; Shroyer, Emily L.; Govindarajan, Rama; Farrar, J. Thomas; Weller, Robert A.; Moum, James N. (American Geophysical Union, 2019-04-08)A yearlong record from moored current, temperature, conductivity, and four mixing meters (χpods) in the northernmost international waters of the Bay of Bengal quantifies upper‐ocean turbulent diffusivity of heat (Kt) and ...