• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Marine Biological Laboratory
    • Visiting Investigators
    • View Item
    •   WHOAS Home
    • Marine Biological Laboratory
    • Visiting Investigators
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Ink from longfin inshore squid, Doryteuthis pealeii, as a chemical and visual defense against two predatory fishes, summer flounder, Paralichthys dentatus, and sea catfish, Ariopsis felis

    Thumbnail
    View/Open
    152.full-2.pdf (168.6Kb)
    Date
    2013-12-01
    Author
    Derby, Charles D.  Concept link
    Tottempudi, Mihika  Concept link
    Love-Chezem, Tiffany  Concept link
    Wolfe, Lanna S.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/6399
    As published
    https://doi.org/10.1086/BBLv225n3p152
    DOI
    10.1086/BBLv225n3p152
    Abstract
    Chemical and visual defenses are used by many organisms to avoid being approached or eaten by predators. An example is inking molluscs—including gastropods such as sea hares and cephalopods such as squid, cuttlefish, and octopus—which release a colored ink upon approach or attack. Previous work showed that ink can protect molluscs through a combination of chemical, visual, and other effects. In this study, we examined the effects of ink from longfin inshore squid, Doryteuthis pealeii, on the behavior of two species of predatory fishes, summer flounder, Paralichthys dentatus, and sea catfish, Ariopsis felis. Using a cloud assay, we found that ink from longfin inshore squid affected the approach phase of predation by summer flounder, primarily through its visual effects. Using a food assay, we found that the ink affected the consummatory and ingestive phase of predation of both sea catfish and summer flounder, through the ink's chemical properties. Fractionation of ink showed that most of its deterrent chemical activity is associated with melanin granules, suggesting that either compounds adhering to these granules or melanin itself are the most biologically active. This work provides the basis for a comparative approach to identify deterrent molecules from inking cephalopods and to examine neural mechanisms whereby these chemicals affect behavior of fish, using the sea catfish as a chemosensory model.
    Description
    Author Posting. © Marine Biological Laboratory, 2013. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 225 (2013): 152-160.
    Collections
    • Visiting Investigators
    Suggested Citation
    Biological Bulletin 225 (2013): 152-160
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo