Show simple item record

dc.contributor.authorKim, I.-N.  Concept link
dc.contributor.authorLee, K.  Concept link
dc.contributor.authorBange, Hermann W.  Concept link
dc.contributor.authorMacdonald, Alison M.  Concept link
dc.date.accessioned2014-01-23T20:02:12Z
dc.date.available2014-01-23T20:02:12Z
dc.date.issued2013-11-01
dc.identifier.citationBiogeosciences 10 (2013): 6783-6792en_US
dc.identifier.urihttps://hdl.handle.net/1912/6385
dc.description© The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 6783-6792, doi:10.5194/bg-10-6783-2013.en_US
dc.description.abstractMicrobial nitrous oxide (N2O) production in the ocean is enhanced under low-oxygen (O2) conditions. This is especially important in the context of increasing hypoxia (i.e., oceanic zones with extremely reduced O2 concentrations). Here, we present a study on the interannual variation in summertime nitrous oxide (N2O) concentrations in the bottom waters of the northern Gulf of Mexico (nGOM), which is well-known as the site of the second largest seasonally occurring hypoxic zone worldwide. To this end we developed a simple model that computes bottom-water N2O concentrations with a tri-linear ΔN2O/O2 relationship based on water-column O2 concentrations, derived from summer (July) Texas–Louisiana shelf-wide hydrographic data between 1985 and 2007. ΔN2O (i.e., excess N2O) was computed including nitrification and denitrification as the major microbial production and consumption pathways of N2O. The mean modeled bottom-water N2O concentration for July in the nGOM was 14.5 ± 2.3 nmol L−1 (min: 11.0 ± 4.5 nmol L−1 in 2000 and max: 20.6 ± 11.3 nmol L−1 in 2002). The mean bottom-water N2O concentrations were significantly correlated with the areal extent of hypoxia in the nGOM. Our modeling analysis indicates that the nGOM is a persistent summer source of N2O, and nitrification is dominating N2O production in this region. Based on the ongoing increase in the areal extent of hypoxia in the nGOM, we conclude that N2O production (and its subsequent emissions) from this environmentally stressed region will probably continue to increase into the future.en_US
dc.description.sponsorshipThe preparation of the manuscript was supported by the Mid-career Research Program of the Korea National Research Foundation (No. 2012R1A2A1A01004631) and by Polar Academy Program of the Korea Polar Research Institute. Partial support was also provided by the project titled “Long-term change of structure and function in marine ecosystems of Korea” funded by the Ministry of Land, Transport and Maritime Affairs. Support for A. M. Macdonald was provided through NSF grant No. OCE-0926651.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.publisherCopernicus Publications on behalf of the European Geosciences Unionen_US
dc.relation.urihttps://doi.org/10.5194/bg-10-6783-2013
dc.rightsAttribution 3.0 Unported*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/*
dc.titleInterannual variation in summer N2O concentration in the hypoxic region of the northern Gulf of Mexico, 1985–2007en_US
dc.typeArticleen_US
dc.identifier.doi10.5194/bg-10-6783-2013


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 Unported
Except where otherwise noted, this item's license is described as Attribution 3.0 Unported