Show simple item record

dc.contributor.authorCagua, E. Fernando  Concept link
dc.contributor.authorBerumen, Michael L.  Concept link
dc.contributor.authorTyler, E. H. M.  Concept link
dc.date.accessioned2013-12-30T15:12:13Z
dc.date.available2014-10-22T08:57:20Z
dc.date.issued2013-07
dc.identifier.urihttps://hdl.handle.net/1912/6356
dc.descriptionAuthor Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Coral Reefs 32 (2013): 1123-1134, doi:10.1007/s00338-013-1069-2.en_US
dc.description.abstractAcoustic telemetry is an increasingly common tool for studying the movement patterns, behaviour, and site fidelity of marine organisms, but to accurately interpret acoustic data, the variability, periodicity and range of detectability between acoustic tags and receivers must be understood. The relative and interactive effects of topography with biological and environmental noise have not been quantified on coral reefs. We conduct two long-term range tests (one and four months duration) on two different reef types in the central Red Sea, to determine the relative effect of distance, depth, topography, time of day, wind, lunar phase, sea surface temperature and thermocline on detection probability. Detectability, as expected, declines with increasing distance between tags and receivers, and we find average detection ranges of 530 and 120 m, using V16 and V13 tags respectively, but the topography of the reef can significantly modify this relationship, reducing the range by ~70%, even when tags and receivers are in line-of-sight. Analyses that assume a relationship between distance and detections must therefore be used with care. Nighttime detection range was consistently reduced in both locations and detections varied by lunar phase in the four month test, suggesting a strong influence of biological noise (reducing detection probability up to 30%), notably more influential than other environmental noises, including wind-driven noise, which is normally considered important in open-water environments. Analysis of detections should be corrected in consideration of the diel patterns we find, and range tests or sentinel tags should be used for more than one month to quantify potential changes due to lunar phase. Some studies assume that the most usual factor limiting detection range is weather-related noise; this cannot be extrapolated to coral reefs.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.relation.urihttps://doi.org/10.1007/s00338-013-1069-2
dc.subjectPassive monitoringen_US
dc.subjectAcoustic transmittersen_US
dc.subjectDetection efficiencyen_US
dc.subjectSaudi Arabiaen_US
dc.titleTopography and biological noise determine acoustic detectability on coral reefsen_US
dc.typePreprinten_US
dc.description.embargo2014-08-19en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record