Show simple item record

dc.contributor.authorMejia, Luz Maria  Concept link
dc.contributor.authorIsensee, Kirsten  Concept link
dc.contributor.authorMendez-Vicente, Ana  Concept link
dc.contributor.authorPisonero, Jorge  Concept link
dc.contributor.authorShimizu, Nobumichi  Concept link
dc.contributor.authorGonzalez, Cristina  Concept link
dc.contributor.authorMonteleone, Brian D.  Concept link
dc.contributor.authorStoll, Heather M.  Concept link
dc.date.accessioned2013-12-16T20:33:39Z
dc.date.available2013-12-16T20:33:39Z
dc.date.issued2013-06-18
dc.identifier.citationGeochimica et Cosmochimica Acta 123 (2013): 322–337en_US
dc.identifier.urihttps://hdl.handle.net/1912/6351
dc.description© The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geochimica et Cosmochimica Acta 123 (2013): 322–337, doi:10.1016/j.gca.2013.06.011.en_US
dc.description.abstractDespite the importance of diatoms in regulating climate and the existence of large opal-containing sediments in key air-ocean exchange areas, most geochemical proxy records are based on carbonates. Among them, Boron (B) content and isotopic composition have been widely used to reconstruct pH from foraminifera and coral fossils. We assessed the possibility of a pH/CO2 seawater concentration control on B content in diatom opal to determine whether or not frustule B concentrations could be used as a pH proxy or to clarify algae physiological responses to acidifying pH. We cultured two well-studied diatom species, Thalassiosira pseudonana and Thalassiosira weissflogii at varying pH conditions and determined Si and C quotas. Frustule B content was measured by both laser-ablation inductively coupled mass spectrometry (LA-ICPMS) and secondary ion mass spectrometry (SIMS/ion probe). For both species, frustules grown at higher pH have higher B contents and higher Si requirements per fixed C. If this trend is representative of diatom silicification in a future more acidic ocean, it could contribute to changes in the efficiency of diatom ballasting and C export, as well as changes in the contribution of diatoms relative to other phytoplankton groups in Si-limited regions. If B enters the cell through the same transporter employed for HCO3− uptake, an increased HCO3− requirement with decreasing CO2 concentrations (higher pH), and higher B(OH)4/HCO3− ratios would explain the observed increase in frustule B content with increasing pH. The mechanism of B transport from the site of uptake to the site of silica deposition is unknown, but may occur via silicon transport vesicles, in which B(OH)4− may be imported for B detoxification and/or as part of a pH regulation strategy either though Na-dependent B(OH)4−/Cl− antiport or B(OH)4−/H+ antiport. B deposition in the silica matrix may occur via substitution of a B(OH)4− for a negatively charged SiO− formed during silicification. With the current analytical precision, B content of frustules is unlikely to resolve ocean pH with a precision of paleoceanographic interest. However, if frustule B content was controlled mainly by HCO3− uptake for photosynthesis, which appears to show a threshold behavior, then measurements of B content might reveal the varying importance of active HCO3− acquisition mechanisms of diatoms in the past.en_US
dc.description.sponsorshipThis work was funded by the European Community under the project ERC-STG-240222-PACE.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.urihttps://doi.org/10.1016/j.gca.2013.06.011
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Unported*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/*
dc.titleB content and Si/C ratios from cultured diatoms (Thalassiosira pseudonana and Thalassiosira weissflogii) : relationship to seawater pH and diatom carbon acquisitionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.gca.2013.06.011


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Unported
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Unported